
COFESKÉ VYSOKÉ UC TECHNICAL ENGINEERING
FACULTY IN PRAGUE

DEPARTMENT OF ZCONTROL TECHNIQUES

THESIS

Profibus DP Master on PC

2004 Pavel Trnka

Translated from Czech to English - www.onlinedoctranslator.com

https://www.onlinedoctranslator.com/en/?utm_source=onlinedoctranslator&utm_medium=pdf&utm_campaign=attribution

Profibus DP Master on PC Pavel Trnka

Annotation

This work presents a solution to the problem of connecting the Profibus fieldbus to a regular PC
without the use of special hardware. The work implements a bus control unit (master) for Profibus
DP (Distributed Peripherals), which is the most widespread variant of this standard intended for
communication between control units and remote peripherals (sensors, actuators).

Commonly used solutions are expensive because they are built on special expansion
cards using their own processors, customer circuits and other circuits with sufficient
power to meet the high requirements of Profibus.

This work, on the other hand, allows you to connect Profibus using a standard RS-232 serial
port or using simple plug-in PCI cards with UART circuits. Profibus DP Master is created by
software and special features of hardware solutions are replaced by the maximum use of
commonly available resources in the PC, which was mainly made possible by writing a program as
a driver for Windows NT / 2000 / XP operating systems. In addition, the application interface is
compatible with Siemens solutions, allowing for easy interchange.

Annotation
Solution for connecting fieldbus Profibus to common PC without use of special hardware will
be proposed in this work. The work implements bus control unit (master) for Profibus DP
(Distributed Peripherals), which is most widely used variation of this standard. It's designed
for communication between control units and distributed peripherals (sensors, actuators).

Commonly used solutions are expensive because they are built on special expansion
cards, which are using their own processors, customer's circuits or another circuits with
enough power to meet high requirements of Profibus.

On the other side, this work allows for connecting Profibus to standard serial port RS –
232 or to simple PCI expansion card based on UART circuit. Profibus DP Master is created as
software implementation and special features of hardware implementations are substituted
by maximal use of common means in PC. This was mainly possible by creating Profibus DP
Master as system driver for Windows NT / 2000 / XP. Moreover application interface is
compatible with solutions from Siemens company, which allows for simple replacement.

AND

Profibus DP Master on PC Pavel Trnka

Declaration
I declare that I have prepared my diploma thesis independently and I have used only the
documents (literature, projects, software, etc.) listed in the attached list.

I have no serious reason against using this school work in the sense §60 of Act No.
121/2000 Coll., On Copyright, on Rights Related to Copyright and on Amendments to Certain
Acts (Copyright Act).

In Prague on .
signature

Thanks
First of all, I would like to thank my thesis supervisor Ing. Petr Smolík for his
helpfulness, willingness to consult and the time he devoted to me. Furthermore, Ing.
Pavel Píš for his many inspiring advice from his rich practical experience and Ing.
Pavel Burget for his help in creating this thesis.

Thanks also go to my family for their constant support and home background throughout
the study. Last but not least, many friends whose company has always given me energy for
further work.

II

Content

1 Introduction

1.1
1.2

1
2
2

Why a driver? . The structure of
this work. .

2 Profibus DP
2.1
2.2

4
5
5
5
7
9

14

Physical layer. Line layer

2.2.1
2.2.2
2.2.3
2.2.4

. .
Bus operation. Frame
formats. Profibus state machine
for FDL layer. Bus event
handling. .

3 Physical layer implementation
3.1
3.2

16
16
19
20

Using a standard serial port Use
expansion plug-in cards
3.2.1 OX16PCI954 circuit. .

. .

. .

4 Creating drivers for the Windows operating system
4.1
4.2
4.3

21
23
23
24
25
25
27
27
28
29
30

Tools needed for driver development. Driver
system requirements. Difference between
Legacy and PnP drivers. 4.3.1 Plug and
Play. The way the driver works

Priority levels (IRQL)
Basic structure and routines of Legacy drivers. 4.6.1

4.6.2
4.6.3

4.4
4.5
4.6

. .
. .

DriverEntry.
Unload. Interrupt Service
Routine (ISR).

III

Profibus DP Master on PC Pavel Trnka

4.6.4
4.6.5
4.6.6
Driver structure with PnP support. 4.7.1

4.7.2
4.7.3
4.7.4
Memory usage by the driver. Configuration
location in the registry. .

Deferred Procedure Call (DPC).
IoTimer. Dispatch
Routine. .

30
31
31
31
32
33
33
33
33
34
34
35
36

4.7
DriverEntry.
AddDevice.
DispatchPnP. Interrupt Service
Routine (ISR).

4.8
4.9
4.10 Debuggers. .
4.11 INF File. .
4.12 Property Page. .

5 Line layer implementation - ProfiM
5.1
5.2
5.3
5.4
5.5
5.6
5.7

38
38
39
40
42
42
45
45

Program implementation. Profibus
requirements. Converter control and
its use for timing. Timing with 16C950
circuit. The principle of operation of
ProfiM.
Watchdog. CPU
load. .

6 FDL layer application interface
6.1
6.2

47
49
50

Line layer services. Communication
with FDL layer. .

7 Conclusion

7.1 What could be improved or added. .
52
53

ANDExample of using ProfiM 54

B ProfiMu sample application 57

C List of abbreviations
NO. 1

C.2

59
59
60

Abbreviations for Profibus.
Abbreviations for DDK. .

D Contents of the supplied CD 61

IV

Chapter 1
Introduction

The Profibus industrial bus [5] is one of the most widely used buses in the industry. Its most
commonly used variant is Profibus DP (Distributed Peripherals). It is designed for
communication between control units (PLC, industrial computers) and decentralized
peripherals, which are remote sensors and actuators. Instead of a multi-wire connection that
would connect each peripheral separately with one line, one Profibus connection is used with
a linear bus topology that connects everything.

Deployment of the Profibus guarantees fast and reliable data exchange and, in addition, it is
possible to share one bus with several control units. On the other hand, if we want to use a
regular PC as an active master control station and connect Profibus DP to it, we will encounter the
high price of plug-in cards that the Profibus master implements using customer circuits and other
hardware solutions.

The motivation for this work was therefore to design the cheapest and easiest to use active
station implementation Profibus DP Master for PC, which would be from the application point of
view compatible with some practical solution and thus allow its replacement.

The hardware layer of the Profibus is based on the RS-485 standard, so a standard RS-232
serial port with a simple RS 232/485 converter, which does not need an external power
supply, is sufficient for the Profibus connection implemented in this work. This is a solution
applicable for low bit rates. If we need to achieve high transmission speeds (currently the
maximum is 12Mbps), then this work also allows the use of PCI cards with UART (Universal
Asynchronous Receiver / Transmitter) circuits, where the maximum speed is determined only
by processor power and UART circuit options.

However, the simplicity of the connecting hardware has shifted all the work of the special
circuits commonly used for this purpose to software. It must therefore replace the hardware
solutions with maximum use of all available resources of a regular PC.

Progressive software work has shown that the only viable implementation path for
modern operating systems is to create Profibus DP Master as a driver. And so it was created

1

Profibus DP Master on PC Pavel Trnka

driver for Windows NT 4.0 and adding Plug and Play support also for Windows 2000
and Windows XP operating systems. The created driver implementsProfibus DP
Master for PC up to FDL layer (line layer).

An undervalued part of this work was also the choice of the name of the project by which the word
was chosen ProfiM for a certain similarity with the name of the problem and mainly due to the small
number of relevant links found by Internet search engines.

1.1 Why a driver?
There were several reasons to create a DP master as a driver. Above all, it was necessary in
Windows operating systems to time with periods in the order of tens of microseconds, which is
not achievable for common applications. By timing is meant the invocation of service routines
after very short time intervals. The only way to achieve this was to take advantage of the interrupt
capabilities and hardware features of a standard serial port or UART circuitry on PCI expansion
cards. However, this would not be possible from a normal application, as they are not allowed
direct access to the operating system by the operating system.

Another reason was the need to control the RS 232/485 converter, which is theoretically
simple, but in the software implementation under Windows it was a challenging problem,
which was also solved only by creating a driver. Finally, the driver implementation integrated
the Profibus interface into the operating system, which brings benefits from the application
layer for further use.

1.2 The structure of this work

To read and have a good understanding of this work, it is advisable to have at least partial
knowledge of Profibus issues - this is roughly described in Chapter 2, but in some chapters there
may be principles and concepts that are not fully explained.

Chapter 2 roughly describes the principles of Profibus, especially its line layer,
is the main part of this work. A more detailed description can be found, for example, in [1] or directly
in the standard [5].

Chapter 3 shows how to connect Profibus to a PC in terms of physical layer, or how to connect
bus using the RS-485 industry standard.

Chapter 4 describes how drivers are created in Windows operating systems. Describing
their basic structure, what tools are needed for creation and what are the differences from writing
common programs. This chapter is useful in that the information about writing drivers for physical
devices summarized in this way is little available. We will meet either with a superficial description or
with detailed documentation.

2

Profibus DP Master on PC Pavel Trnka

Chapter 5 shows how the Profibus DP Master line layer is created - how it went
its development and what problems needed to be solved.

Chapter 6 describes the interface that the application (higher layer DP master or directly FDL
application) used to communicate with the FDL layer (driver).

3

Chapter 2
Profibus DP

Profibus DP (Distributed Peripherals) is the most used variant of the Profibus industrial
bus, which is designed mainly for communication between control units and
decentralized peripherals. Usually, one communication channel replaces the multi-wire
connection of the control unit with sensors and actuators, where the use of Profibus also
ensures reliable and fast data exchange.

ISO / OSI model ProfibatsD P

ANDplikační vrstvand ANDplikační vrstva (APP) FMAND7

Prethatntační vrstvand

RElační vrstvand

TranspOrtní vrstvand ~
Sifteriná vrstvand F DLU withis FMAND1/ 2UwithEr

Interface services

Linkoiná vrstvand Ř management přs tupat U.S bellowsand
Transmissionovýp rotokol

(F DL)

Physical vrstvand Physical vrstva (PHY)

FMAND7

FMAND1/ 2

FieldbusM anagementL ayer 7

FieldbusM anagementL ayers1and2

F DL

PHY

FieldbusD ata L ink

Physical

Figure 2.1: ISO / OSI model and Profibus DP

4

Profibus DP Master on PC Pavel Trnka

Profibus DP has a layered architecture built according to the ISO / OSI model (Figure 2.1).
It uses physical, line and application from individual layers. The unused four layers are
partially included in the others. This work implements the physical and line layer and offers
an interface for the application layer.

2.1 Physical layer
The physical layer defines the requirements for the properties of the transmission channel. The Profibus standard

[5] offers an extended RS-485 standard as one of the options for the implementation of the physical layer of use in

industry. This determines the physical properties of the channel and the data encoding on the bus.

An important property, which is defined by the standard for the physical layer, is the speed of
communication. This is specified for Profibus DP in the range of 9.6 kbps to 12 MBps (Table 3.1). The
standard defines a maximum permissible deviation of 0.3%, which in practice may make it impossible
to achieve certain communication speeds. For example, if the UART has an inappropriate base clock
frequency and only rough options for dividing that frequency. However, experience shows that the
acceptable speed deviation is up to 1%.

2.2 Line layer
The link layer has the task of controlling medium access control, compiling
transmitted frames, decoding incoming frames and providing data exchange and link
layer control services to the higher layer.

The link layer consists of the FDL (Fieldbus Data Link) part, which provides its main functions,
and the FMA (Fieldbus Management) part, which provides its control. Although not entirely
accurate, the line layer is often referred to as the FDL layer.

2.2.1 Bus operation
Profibus allows you to connect up to 127 stations on one bus. The communication channel
formed by the bus thus becomes a shared physical resource on which only one station can
transmit at a time. The standard therefore specifies precise rules for the efficient and
deterministic use of the bus.

Stations are divided into two types: master and slave. Master stations are designed to
control bus traffic and initiate communication. In contrast, a slave station can only start
transmitting if it has been directly requested to do so by the master station.

In order for it to work on the communication bus, it must have at least one master station on it.
However, there can be several master control stations. In order for them to be on the same bus at the
same time, they need to take turns in bus control. This is ensured by the fact that the master stations
pass on the authorization to send the so-called token. The transmission takes place in order

5

Profibus DP Master on PC Pavel Trnka

growing addresses, and the master with the highest address passes the token back to the
master with the lowest address. By this gradual transfer, the master stations form a logical
circle structure.

The structure of the logical circle is determined by the List of Active Stations (LAS), which
is created and maintained by each master on the bus. It is a list of all addresses, in which it is
stated for each station whether it is an active master station. Each station creates this list by
monitoring bus traffic. From it, it also finds out which next station to pass the token (NS -
Next Station) and from which station the token will come back (PS - Previous Station). When
the master receives the token, it obtains the credential to transmit on the bus. It can send
requests to slave stations or communicate with another master.

The token holding time is limited to ensure an upper time limit after which the
transmission credentials are returned to each master. It is limited by timeTTR

(Time To Reach), which is defined in each Profibus configuration and specifies the
required maximum token circulation period between all master stations.

If he holds a master token, he is obliged to find out before each transmission whether he still
has time to hold it. For this purpose, it measures the time interval from the last time the token
was passed to the next master station in the logical token ring (NS). This interval compares with
the value of the parameterTTR. If the time interval exceeds this parameter, the token passes to the
next master station. This is a special case when there is no time left to accept the token. In this
case, the master can process one high priority request.

An essential part of the standard is a description of Profibus's behavior in so-called
transient states, which are temporary events on the bus suspending its normal operation,
such as: first start of bus communication, connection or disconnection of the master station,
token failure, bad frame, etc. will be described in section 2.2.4).

If the bus is not in a transient state, then cyclic data exchange usually takes place between the
master stations and its respective slave stations (distributed peripherals). During this data
exchange, the master cyclically sends output data to each of its slave stations and at the same
time reads the input data. It most often sets and reads digital or analog outputs and inputs. In
addition, the use of a special bus command ensures the synchronization of input / output values
on all slave stations, ie the simultaneous setting of all outputs and the simultaneous reading of all
inputs at one point in time.

The whole data exchange thus resembles a part of the scan cycle in the PLC, not by chance,
because PLCs are the most common master stations.

In order to add or remove stations on the bus while running, each master
maintains a list of occupancy of individual addresses in its address space (GAP), which
is the range of addresses from its address (TS - This Station) to the address of the
next master (NS). This list is called a "GAP list" and its addresses are cyclically tested
by the master at certain time intervals to determine if there is a master station, a
slave station or an unoccupied address.

6

Profibus DP Master on PC Pavel Trnka

2.2.2 Frame formats

B0 B1 B2 B3 B4 B5 B6 B7
1 2 3 4 5 6 7 8 9 10 11

Figure 2.2: Profibus character format

The basic data unit on the Profibus bus is the eleven bit character (Figure 2.2), which
consists of one start bit, followed by eight data bits, an even parity bit and one stop bit.
Frames (packets) are compiled from these characters, for which there is an important
requirement on Profibus that there are no time gaps between the following frame
characters. This requirement may seem trivial, but it can also be a problem if the serial
channel transmitter used does not have FIFO memory and we do not have the ability to
handle incoming interrupts fast enough each time.
A total of four types of frames are used on all buses on Profibus:

1. Framework without data (Figure 2.4)

2. Fixed length data frame (Figure 2.5)

3. Variable-length data frame (Figure 2.6)

4. Transmission Credential Framework - Token (Figure 2.3)

For the meanings of the abbreviations of the names of individual flats in the boxes, see Annex no. 1.
Each frame type has a specific request frame structure and a response frame structure that should
come to the request. A special answer is the Short Acknowledge framework (Figure 2.4), which can
come to any request and usually confirms the execution of the request.

SON SD4 DAND SA

SD4 - Start Delimiter = 0xDC

Figure 2.3: Token Frame format

7

ST
AR

T
BI

T

LS
B

M
SB

EV
EN

 P
AR

IT
Y

ST
O

P
BI

T

Profibus DP Master on PC Pavel Trnka

Format frameep requestavkat:

WITHYN WITHD1 DAND WITHAND FC FCWITH ED

L

Format frameeod pscoutand:

WITHD1 DAND WITHAND FC FCWITH ED

L

FormatS hortACknowledGeod pscoutand:

WITHC

WITHD1-S thertDElimit r = 0x10
EDE ndD elimiter = 0x16

WITHYNS ynChronfromationP eriod (min. 33Tbit)
WITHCS inGleC handracter = 0xE5

Figure 2.4: Frame format without data

Format frameep ožadandvku:

WITHYN WITHD3 DAND WITHAND FC DANDTAND_ATNIT FCWITH ED

L

Format frameeod pscoutand:

WITHD3 DAND WITHAND FC DANDTAND_ATNIT FCWITH ED

L

WITHD3-S thertD elimiter = 0 xA2 E DE ndD elimiter = 0 x16

Figure 2.5: Format of a frame with fixed length data

Format frameep ožadandvku:

WITHYN WITHD2 LE LE r WITHD2 YES WITHAND FC DATA_UNIT FCB ED

L

Format frameeod pscoutand:

WITHD2 LE LE r WITHD2 YES WITHAND FC DATA_UNIT FCB ED

L

WITHD2-S tartD elimiter = 0x68 EDE ndD elimiter = 0x16

Figure 2.6: Format of a frame with variable length data

8

Profibus DP Master on PC Pavel Trnka

2.2.3 Profibus state machine for FDL layer
The FDL function, or line layer, can be well described and also implemented as a state machine
with ten states and transitions between them (Figure 2.7). After switching on the power supply or
reset, the machine starts in the default state "Offline". In response to external events, lower and
higher layer requests, the automaton switches between states. The transitions that the machine
goes through during the operation of the station in the multi-master system without exceptional
situations are marked in red. Transitions marked in black correspond to events related to bus
collisions, token loss, bus failures, and logic circuit changes.

C la im _ T windows

3 2 8
4

2 9

3 6 8 1 0
1

2
5
7

O ff lin e

0
L is te n _ T windows

1
A ct iv e _ Id le

2
9 U with _ T windows

4

1 1 1 4

2 5 1 2 13 1 5
2 4

A wa it_ D a ta _ R esp C heck _ A ccess _ T im e

2 1 2 3 2 7 5 6

C heck _ T windows _ P ass

8

2 2

1 8 2 0 1 6
1 7 3 0

A wa it_ S ta tu s _ R esp
9

P ass _ T windows

7
1 9

2 6

Figure 2.7: FDL layer state machine

The following sections describe the operation of the state machine. The numbers in
parentheses correspond to the numbered arrows in Figure 2.7, which represent the transitions
between states.

0 Offline

The master enters the "Offline" state as soon as the power is switched on. In this state, the
operating parameters are initialized and a self-test is performed. When initializing the parameters,

9

Profibus DP Master on PC Pavel Trnka

the configuration is read and the FDL layer data structures are initialized. Performing a self-test depends on
the specific implementation of the master and usually involves testing the transmitter and receiver circuits.
In the bus disconnection state, the internal loop-back is closed and the test data transfer is tested. After
successful initialization and self-test, (1) the master enters the "Listen Token" state.

Another reason to go to the "Offline" state can occur if a station with the same
address (2) is detected on the bus or if a hardware fault in the bus access (26) is
detected - a fault in the transmitting or receiving circuits.

1 Listen Token

When the master is ready for communication, it enters the "Listen Token" state. In
this state, it is still passive and only monitors (3) bus traffic to find out which stations are
active. It detects this by receiving and analyzing all "Token Frame" frames (Figure 2.3),
which are used to pass credentials between active stations in the logical circuit. By
retrieving addresses from the Token Frames, the station creates a list of active stations
- LAS (List of Active Stations).

If the master manages to eavesdrop on an identical token cycle between active stations
when creating a LAS list, it sets its status to "Ready to enter logical token ring" and continues
to monitor bus traffic and update the LAS list. From the created list, the LAS master
determines its predecessor (PS) and successor (NS) in the logical circuit. It remains in the
"Listen Token" state until the "Request FDL Status" that is addressed to it arrives. In response,
the master sends its "Ready to enter logical token ring" status and, with the immediate arrival
of the credentials, switches to the "Active Idle" status (5). This is how the process is described
in the standard, but after the arrival of the credential framework, it is more of a simultaneous
transition (5) and (9) to the "Use Token" state.

When entering this state, the FDL starts a time-out timer with a period TIT. If no
traffic is detected on the bus until this timer expires, then the FDL assumes that a
logic circuit needs to be initialized or reset. For this purpose, the master enters the
"Claim Token" state (4).

When eavesdropping on credential frames, a frame whose sender address (SA) is the same as
our address (TS) may arrive. If two such frames are received, then probably the station with our
address on the bus already exists and is included in the logical circle. The master goes (2) to the
"Offline" state and notifies the FMA1 / 2 layer of this error.

2 Active Idle

"Active Idle" is a state in which the master is fully included in the logical circle, but
does not currently have a token. It monitors bus traffic and responds to requests
addressed to it, or only receives data from the bus that does not require a response.

10

Profibus DP Master on PC Pavel Trnka

When the credential frame addressed to us (DA = TS) arrives, (9) the master enters the "Use Token"
state. If the master detects that it was skipped when passing credentials in the logical circle (eg the PS
station passed the token to the NS station), it goes (7) to the "Listen Token" state. It also enters this
state (7) if it detects that a station with a duplicate address is transmitting on the bus (the frame
received from outside has SA = TS).

When entering this state, the FDL starts a time-out timer with a period TIT. If no
traffic is detected on the bus until this timer expires, then the FDL assumes that the
logical ring has broken and needs to be restored. For this purpose, the master enters
the "Claim Token" state (8).

3 Claim Token

The master enters this state due to the expiration of the timer for monitoring activity on the
bus, either from the "Listen Token" or "Active Idle" state. This means that the credential transfer
logic has broken or our station is the only master on the bus. If the logical circle breaks down, we
already have the GAPL and LAS lists and it is not necessary to create them again, so we
immediately go (29) to the "Use Token" state. In order to avoid concurrence by simultaneously
appropriating the token of several masters, it is worth the time-outTIT the TS address is taken into
account according to the formula:

TIT = 6.TSL + 2.TS.TSL,

where TSL is the time slot interval. As a result, the master station with the lowest
address is the first to try to restore the logical circle.

If the logical circle needs to be initialized, a credential frame with addresses SA = TS and
DA = TS is first sent twice on the bus. The master then enters (28) the "Pass Token" state to
create a GAPL and designate an NS station to pass credentials.

4 Use Token

A state in which the master has authorization and can therefore initiate a transmission on the bus.
When entering this state, the station first determines how much time it has to use the authorization.
From the "Token Rotation Timer", it finds out how long the token actually lasted in the logical circle
cycleTRR (Real Rotation time). By comparison with the required circulation timeTTR

(Target Rotation time) is the maximum time to hold the token TTH (Token Holding
time) as:

TTH = TTR - TRR.
If time remains (TTH > 0), the master selects a frame to send from the request queue. Preferably, it

selects the first request that is in line from the high-priority queue or, if empty, then selects the request
from the low-priority queue. After sending the framework for which it is expected

11

Profibus DP Master on PC Pavel Trnka

the response goes (11) to the "Await Data Resp" waiting state and at the same time the "Slot Timer" is
started, which ensures the invocation of a time-out if the interrogated station does not respond.

If, when entering the Use Token state, the time (TTH) exhausted, ie (TTH <= 0), the
master can still process one high priority request.

If a request from the queue is of a type that does not require a transmission on the bus (eg a
request to activate SAP), it is processed, the response is sent to the higher layer and the master starts
processing the next request.

If both queues are empty, the master (14) switches to the "Check Access Time" state.

5 Await Data Resp

The state in which we wait for a response after sending the request frame. If the sent frame was of
the SDN (Send Data with No Acknowledge) type, we do not wait for a response and immediately return
(13) to the "Use Token" state.

While we wait, we can accept these three types of frames:

1. Valid confirmation or response from the station we addressed. We process the
response and return (13) to the "Use Token" state.

2. A valid frame, but of an unexpected type (such as a credential frame) or from a different station than
we expect. Apparently an error occurred somewhere and so we go (27) to the "Active Idle" state.

3. Invalid frame, ie a frame with an incorrect Start Delimiter, End Delimiter,
incorrect checksum or incorrect parity of a character. If this response arrives or
the Slot Timer expires, the request is resent. If the station does not respond to
repeated requests, the higher layer is notified and the master (13) enters the
"Use Token" state.

6 Check Access Time

In this state, the master checks if he still has time to hold the authorization. If there is
enough time left (TTH > 0), returns (15) to the "Use Token" state. When all the time is
exhausted, (16) enters the "Pass Token" state.

7 Pass Token

In this state, the FDL attempts to pass credentials to the next station in the logical
circuit (NS). At the same time as sending the credential frame, the master should verify,

12

Profibus DP Master on PC Pavel Trnka

if the framework is really successful. If the same frame does not come back from the monitor, there is
probably an error in the transmission circuits and the FDL goes (26) to the "Offline" state.

If the "GAP Update Time" expires before the credential frame is sent, the oldest entry
in the GAP list is restored by the master sending the "Request FDL Status" frame from the
corresponding GAP and goes (17) to the "Await Status Response" status. Two responses
can come to the request:

1. A response is received from the slave station or no response is received on the request (the station
with the given address does not exist on the bus or does not communicate). The entry in the GAP list
is updated and after sending the credentials for the NS, the master (20) switches to the "Check Token
Pass" status.

2. A response is received from the master station, which is ready to enter the logical circle. The
corresponding master is marked as NS (Next Station) and the GAP list is shortened
accordingly. At the same time, a credential frame is sent to this master and the FDL goes
(20) to the "Check Token Pass" state.

9 Await Status Response

The master enters this state after sending a "Request FDL Status" to find out the status of the
station at the given address. When entering this state, an interval timer is startedTSL. If a response
arrives or the timer expires (the station at the given address is not or does not respond), the FDL
goes to the "Pass Token" state, where the result is processed.

Another possibility is that while waiting for a response, a frame of a different type than
expected arrives, the FDL then assumes that another station is active and enters (24) the "Active
Idle" state.

8 Check Token Pass

The master enters this state to wait for verification of a successful credential transfer. The
handover is considered successful if the frame sent by the NS (SA = NS) is received from the bus. After
verification, the master (23) switches to the "Active Idle" state. If the NS station fails to pass the
credentials, the master (22) returns to the "Pass Token" state so that the next station after the NS in the
logical circle is found to pass the credentials.

If the master is the only one on the bus (mono-master system), then immediately without
authentication, which does not make sense in this case, it goes through the "Active Idle" status to the
"Use Token" status.

13

Profibus DP Master on PC Pavel Trnka

2.2.4 Bus event handling

The strength of Profibus is well-developed procedures for dealing with exceptional events on
the bus. Most of them result from the described state machine, but we will show some
specifically.

Connection of the master station on the bus

After connecting the master station to the bus, the station behaves passively and only monitors the
traffic on the bus. It creates a list of LAS from the frames sent over the bus and thus finds out the
addresses of other master stations. After the list has been successfully created, the master waits for
the "Request FDL Status" request to be received from the master station in whose GAP address space it
is located. When this request arrives, it sends a response stating that it is ready. This causes a token to
be sent to him immediately, which enters the logical ring and he can start actively communicating.

Token loss

If the token is lost for any reason, bus operation stops. This condition is detected by the master
stations and after the time-out expires, the master station with the lowest address appropriates the
token and reinicalizes the logic circuit. The length of the time-out is determined by the station address,
so the master with the lowest address will try to reinitialize the circuit first.

Disconnection of the master station from the bus

If the master station is suddenly disconnected from the bus, the following two cases can occur:

1. At the time of disconnection, another master station owned the token. When it is the turn of the
disconnected station, the previous station (PS) will try to pass the token to it. After a repeated
unsuccessful attempt to pass the token to the disconnected station, its address in the LAS list will be
marked as passive and at the same time the next station from the logical circuit to which the token
will be passed will be determined from this list.

2. If the disconnected master station held the token at the time of disconnection, then the disconnection
will result in its loss. This condition is handled as described in the previous paragraph.

The requested station is not responding

If the master sends a request, then it starts a time-out timer with a period with the last sent
byte of the frame TSL. If there is no response until it expires, then the master repeats the
request. The number of repetitions is determined by the bus parameterretry ctr. If the station
does not respond to retries, it is marked as inactive.

14

Profibus DP Master on PC Pavel Trnka

Error receiving query response

It is the duty of each station on the bus to keep in mind the response frame to the
last request from the bus. If this response is lost or damaged, then the master
station sends the request repeatedly. The fact that this is a recurring request is
identified by the unchanged FCB bit, which is part of the Frame Control Character
(FC). This bit is inverted with each new request. Therefore, if a request with the same
FCB as the previous request occurred, the station repeats the last response.

Duplicate addresses on the bus

If a station detects traffic sent from a station with the same address by listening on
the bus, then after receiving two such frames, it goes to the "Offline" state and
signals a bus error.

15

Chapter 3
Physical layer implementation

When writing to ProfiM, care was taken to consistently separate hardware-dependent parts of the
program from those that may be hardware-independent. This allows the controller to work on
different implementations of the Profibus physical layer, or different ways to connect Profibus to a
PC. These implementations may vary in complexity, cost, and maximum achievable baud rate.

The simplest connection option with minimal costs is to use a standard PC serial
port with a simple RS 232/485 converter without external power supply. This will
allow us to fully connect to Profibus for baud rates of 9600bps and 19200bps. Higher
speeds on the standard serial port cannot be achieved for the reasons given in
section 3.2.

Another option is to use expansion plug-in PCI cards with UART (Universal Asynchronous
Receiver / Transmitter) circuitry, which allows you to move the speed limit much further, and
with a suitable circuit type and sufficiently powerful processor, the current maximum
transmission speed of 12Mbps can be achieved.

3.1 Using the standard serial port

An RS 232/485 converter must be used to connect the Profibus to the PC serial port. Profibus
works on the RS-485 standard and the PC serial port on RS-232. The difference between these
standards is mainly in the voltage levels they use to represent logical values. The second
important difference is also that the RS-485 standard allows the connection of more than two
devices on one line. Multiple devices are connected so that they transmit only one at a time
and the others only receive, so devices that want to communicate via RS-485 tend to switch
the direction of data flow.

A possible diagram of the converter is shown in Figure 3.1. It is a simple converter built on
circuit 75176, which does not need an external power supply to operate. It is powered directly

16

Profibus DP Master on PC Pavel Trnka

from the serial port by setting the DTR output to logic one. This simplifies the use of
the converter, but also limits the overall maximum load of the bus driver. This limits
the maximum number of connectable devices, the line length and does not allow the
use of bus line terminating resistors necessary for higher baud rates.

V + NO. 1

GND
D1 D2 D3 10u

VCCCN1 CN2
1
14
2
15
3
16
4
17
5
18
6
19
7
20
8
21
9
22
10
23
11
24
12
25
13

1
9
2
8
3
7
4
6
5

R4
47KR1

R6
R2

10K
1K
10K

2 TxD>
3 RxD <

4 RTS>
5 CTS <
6 DSR <

U1 8 RxD / TxD-N

3 RxD / TxD-P
1
2
3
4

RO 7
6

D / R

D / R
RE
DE
DI 5 DGND
75176 R5

47KR3
10K

D7
DZ

D8
DZGND CANON-9

7 DGND
20 DTR> GND GND GND GND

D4 D5 D6
IO1
78L05V + VCC

1 ANDG
N
D

O 3
IN- C2

10u C3
100n2

GNDGND GND
CANON-25

Figure 3.1: Simple RS-232 / RS-485 interface

If we need a converter with better properties, we have no choice but to use a
converter with external power supply. In addition to the power line driver, it can also
offer galvanic isolation, which is often used in industry due to the usual use of the RS-485
standard.

Switching the direction of data flow is an essential part of the converter. The RTS signal is used for
this. For RTS = 0 the line driver outputs are in a high impedance state and the converter is thus
switched to receive, for RTS = 1 the bus drivers are activated and the converter can transmit.

At this point, it is worth noting that there are converters with automatic direction switching.
The principle of their operation consists in the use of a monostable flip-flop circuit for direction
control
start bit n
for a length of poison o

length of periods

use them
to noEthe man is pt

Next a
switched to
TxD with int

tO
of
to
ač
him
of

give. This flip-flop switches to falling edge transmissionandeach
transmitted character. The flip-flop period is set to a character, which
means that it is necessary to change this for each baud rate.

However, it can be used for communication on Profibus in our case

and
n
y
thatm, because we need to use the converter to provide additional timing,E
Oreba software ovlad

n sti of this apojeni
(RTS = 1), then everything that is sent to the input of the converter by the signal and the

dishwasher returns to RxD. In other words, everything from the serial port of the PC through

direction
transfer

for the data flow (will be described in section
5.3). k oopback. Je-land convertervl st O of u is hardware l

youíl
withřn

17

RS
-2

32

RS
-4

85

Profibus DP Master on PC Pavel Trnka

the converter will also be sent immediately to the serial port input. This feature can be used to
switch the direction of data flow.

An important part of the converter, which is also used by ProfiMem, is the connection between
the TxD output and the DSR input. If we use a converter other than the one shown in Figure 3.1
with ProfiM, it needs to have this jumper and a hardware loop-back for the transmitted data.

A major problem when connecting a bus using the RS-485 standard via the RS 232/485
converter to most UART circuits with RS-232 is the inability to generate an interrupt from a
blank output shift register (Figure 3.2). If we want to use the RS 232/485 converter, we need
to control the direction of data transfer by software. This means switching the direction of
the converter to transmission before each transmission and switching back to reception after
sending the last bit of the last character. Switching the direction to transmission is not a
problem, this can be done before sending the first byte of transmitted data, but switching
back is not so easy, precisely because most standard UART circuits (Table 3.2) do not offer an
interrupt from a blankoutput shift register.

Interrupt from empty
output shift register

(missing for standard serial port on PC)
Break from the empty

broadcasting register

Output shift register

Posting characters Broadcast register TxD

Figure 3.2: UART transmitter interruption

The only interrupt we can get from such circuits during transmission only says that it is empty
broadcasting register, which we can refill, however output shift register it is not empty yet and is only
finishing ejecting the character, which means that the character has not yet been completely sent from the
UART. Therefore, if we switch the direction after the arrival of such an interrupt, an error occurs on the bus,
because the direction of transmission is changed in the middle of the transmitted character and so only a
part of it is sent on the bus.

The only way for these circuits to detect full character transmission is to read the Link
Status Register (LSR), which contains a bit indicating an empty output shift register.
However, since we can't generate an interrupt from this bit, it is then necessary to use
infinite loops to wait, which is not a good way for programs on event-driven systems
such as Windows and a completely unacceptable way if we write a driver and need this.

18

Profibus DP Master on PC Pavel Trnka

PC RS-232 . . . 9600 19200 38400 57600 111520
Profibus 9600 19200 45450 93750 187500 . . .

Table 3.1: Comparison of RS-232 baud rates in PC and Profibus (values are in bps)

wait to perform in an interrupt handler (ISR) or DPC routine (see Chapter 4). However,
this problem has been solved and will be described in Chapter 5.

3.2 Using expansion plug-in cards

If we compare the permissible transmission speeds offered by the standard RS-232 on a
PC with the possible transmission speeds of Profibus, we will find that the tolerance
required by Profibus 0.3% will only fit for speeds 9600bps and 19200bps (Table 3.1). In
order to achieve higher speeds, we can only use plug-in cards with UART circuits, which
have higher frequencies of the basic clock frequency with good possibilities of its
division. These not only allow us to achieve the required baud rates (using a suitable
basic clock frequency crystal), but also bring new possibilities over the UART circuits
standardly used in PCs (Table 3.2), which are compatible with the 16C450 circuit.

Some newer UARTs offer the ability to generate an interrupt even after the output
shift register is emptied. If we had this option, it would simplify the program
handling of bus access and would also simplify the way the serial port is used for
timing. Table 3.2 lists some of the newer UARTs along with the basic characteristics. It
can be seen that the circuit that offers such an interrupt is 16C950. In addition, the
new circuits offer a large FIFO buffer, which allows you to reduce the CPU load at
high bit rates.

Therefore, a card for the PCI-1482 PCI bus from Tedia [10] was chosen as another hardware
solution option, which is based on the OX16PCI954 circuit, which is compatible with the 16C950. It
is also possible to use any card from the PCI-14xx or PCI-16xx series from this company. The ports
on the card must be switched to the "RS-485" mode using the switches and the "High Speed"
mode must be set using the jumper. It is also necessary to use a simple reduction (Figure 3.3), as
the output connector of the card has a different signal distribution than the Profibus connector.

If we use another card with a UART circuit, then the best one is one that is also built on a
circuit compatible with 16C950. If a card with a lower type of circuit 450 to 750 is used, it needs to
have at least the possibility of data loop-back and connection between the TxD output and the
DSR input (for reasons, see section 5.3). The program operation of such a card would then be
almost the same as when using the RS 232/485 converter.

19

Profibus DP Master on PC Pavel Trnka

CN1 CN2 CN1 CN2
1 DGND 1

9
1 Rx / Tx- 1

99
2 Rx / Tx-
8

9
2 Rx / Tx +2

RxD / TxD-N 8
2

RxD / TxD-N 88
33 Rx / Tx +

7
4

3 3
RxD / TxD-P 74

7
4
6
5 DGND

RxD / TxD-P 74
6
5

6
DGND 5

6
DGND 5

CANON-9 CANON-9

PCI-14xx PCI-16xx

Figure 3.3: Reduction for connecting Tedia cards to Profibus

FIFO size Interrupt from empty
UART circuit type memoirs shift transmission register

450 1B No
550 16B No
650 128B No
750 128B No
950 128B Yes

Table 3.2: Properties of UART circuits

3.2.1 OX16PCI954 circuit
Circuit manufactured by Oxford Semiconductor [9] designed for use on PCI bus
expansion plug-in cards. It is a complex circuit that offers other functions in addition to
serial channels, such as parallel port, IrDA support, etc. It is important for us that this
circuit integrates four high-speed UART channels, each compatible with 16C950 circuit
and 128B FIFO memory for transmitter and receiver.

Depending on the speed of the base clock frequency used, the maximum achievable
transfer rate can be up to 15Mbps for asynchronous mode. A good feature of this circuit is
the possibility of non-integer division of the clock frequency, which better allows to achieve
several atypical transmission speeds for one clock crystal at the same time.

Furthermore, this circuit is ready for connection to the PCI bus and fully integrates Plug and Play
support with the ability to read the configuration from the EEPROM memory. Last but not least, it
allows you to interrupt from an empty transmission shift register.

20

RS
-4

85
 m

ed
ia

Pr
of

ib
us

RS
-4

85
 m

ed
ia

Pr
of

ib
us

Chapter 4
Creating drivers for the Windows operating
system

Since writing a driver was an essential part of this thesis, we will show in this chapter
how to create drivers for physical devices in Windows operating systems. There are
other types of drivers, but in this chapter we will focus exclusively on drivers for
physical devices. We will describe their basic structure, show what tools are needed
for their creation and how writing drivers differs from writing common programs.

If we need to create a driver for the Windows operating system, we will initially encounter a
lack of information that would roughly describe the solution to this problem, show simple
examples and outline the procedure. The DDK (Driver Development Kit) from Microsoft includes
very good documentation, but it is too detailed for the first approach and does not offer an overall
view of the issue. On the other hand, with the use of the Internet, we find many instructions and
descriptions, which, however, are in the vast majority too superficial. The problem is that there is
nothing like the short obligatory program "Hello World" for the introduction to driver creation.
Although the creation of drivers is often based on sample source code, which are part of the DDK,
even for the simplest usable cases, the number of lines is in the thousands. It is given by that even
the simplest driver must meet some basic requirements and must have routines that allow the
system to communicate with the driver. This also necessitates a good knowledge of the operating
mechanisms of the operating system of which the driver is a part.

If we want to directly access hardware under Windows operating systems, which
is our case, or use low-level system services, then we need to be in so-called
privileged mode. Windows programs work on two levels. The first is the unprivileged
level or User mode (Ring 3). It is designed for common applications that are not
hardware dependent and will suffice with services provided via API

21

Profibus DP Master on PC Pavel Trnka

(Application Interface) of the operating system. Most operating system applications run at
this level and do not allow privileged processor instructions, such as input and output
instructions.in, out and instructions halt. Constraints allow the system to control the
operation of user programs, their separation and thus increase the stability and protection of
the operating system.

The second level is privileged or Kernel mode (Ring 0), in which the kernel of the
operating system and its components (Figure 4.1), which includes drivers. Code executed at
this level is no longer limited by user mode limits, allowing it direct access to the hardware
and control over its course. At the same time, however, this increases the risk of errors.
Kernel-level program errors usually lead to a system crash. Therefore, creating a driver
requires very consistent and careful writing of the source code. A program loop or deadlock
in critical pieces of code, such as interrupt handling, causes the system to stop and, for
example, accessing memory that does not belong to the driver will cause the entire system to
crash almost certainly.

U ser M ode
K ernel M ode

IO M anager E xecut iv e C omponen ts

D ev ic e
D r iv ers K ernel

H ardware A bstract io n L ayer (HAL)

H ardware P la t fo rm

Figure 4.1: Kernel Mode

The use of the C language, which is mainly used to create drivers, also contributes to increasing
these risks. His strong point is working with indicators, but thanks to great benevolence
in this area, for example, an error in a program may result in the use of an uninitialized
pointer referring to a non-program memory. Such a mistake can be easily made in a large
project and, moreover, it does not have to show up every time, so it is necessary to write high
caution when writing code.

22

Profibus DP Master on PC Pavel Trnka

4.1 Tools needed for driver development
Drivers can be developed in any language that uses the C language convention to call
functions, but full development support can only be found for the C language
(header files, source code samples). It's not even customary to use C ++, but mostly C,
to write drivers. It would be possible, but Microsoft recommends using C.

The following group of tools is usually used to write drivers, which is part of "MSDN
Professional Subscription" in addition to Visual Studio:

• Windows NT free build

• Windows NT checked build (not required)

• Software Development Kit (SDK)

• Windows NT Device Driver Kit (DDK)

• Visual Studio (VS or VC ++)

What does it mean checked build and free build? We often come across these concepts in the field of drivers.

These are two different versions into which a driver or any other program can be compiled.Checked build This

means that the program has been compiled with the addition of debugging information and advanced internal

error checking, which allows us to develop more easily, but also reduces speed and increases memory

requirements. Compared to thatfree build is intended for final translation with full optimization, where debugging

information is separated from the code.

The DDK package is intended for creating drivers, it contains header files and static
libraries that are necessary for their compilation. It needs an SDK for its work, from which it
uses a compiler and other tools.

4.2 System requirements for the driver
When writing a driver, make sure that it meets certain criteria given by the operating
system. Their fulfillment allows the system good flexibility and fast response to events.
These criteria are:

Driver code switchability and interruptibility. Since the driver code will run under
emptive multitasking operating system, must be resilient in case of switching or
interruption. This means that temporarily interrupting the code must not cause it to
fail. It should be taken into account that switching or interrupts can occur at any time,
so it is important to ensure that there are no deadlocks or problems with shared data
in such cases. The system provides a wide range of tools such as spinlocks, critical
sections, etc.

23

Profibus DP Master on PC Pavel Trnka

It should be noted that although an interrupt masks the arrival of other interrupts of the same
priority level, its handling can be suspended at any time by the arrival of a higher priority
interrupt.

Hardware and software configurability. The driver should not depend on the specific
hardware settings. For example, if we write a serial port driver, it should be able
to work with all serial ports in the computer (COM1, COM2, etc.).

Packaging of I / O operations. All requests to the driver come in the form of packets,
which are called IRP (I / O Request Packet). Each driver must have an interface
that allows these packets to be received, processed, and resent in IRP form. The
driver should be able to work with several pending requests at once.

4.3 Difference between Legacy and PnP drivers

Legacy driver is a name introduced since Windows 2000 for an old type of driver that does
not have PnP (Plug and Play) support. If we want to create a full-fledged driver for Windows
2000 and higher operating systems, we need to meet the requirements of WDM (Windows
Driver Model), which mainly include:

• Plug and Play support - PnP support is required to obtain hardware resources and
unlimited driver functionality in the PnP operating system.

• Power Management Support - Devices for which the driver is written do not have to
support hardware hardware directly, but the driver should at least implement its
operating system interface. Otherwise, for example, if there is one driver in the
system without Power Management, then the system cannot go into sleep mode.

If the driver does not meet any of these conditions, then from the point of view of Windows
2000, it is a so-called Legacy driver, ie an old type driver that can be used within the framework of
Windows NT compatibility. However, the problem may occur if there is a conflict between the PnP
and Legacy drivers. For example, if we want to use a Legacy serial port driver, we need to remove
the standard PnP serial driver from the system, which is almost impossible. In addition, there may
be problems with the PnP manager not connecting the port range needed for the legacy driver,
making it easier to add PnP support to the driver.

24

Profibus DP Master on PC Pavel Trnka

4.3.1 Plug and Play
PnP-enabled driver requirements:

The PnP driver must not take up hardware resources directly. Instead, the driver
builds a list of resources it needs and sends it to the PnP Manager. The resources
requested by the driver include: IRQ interrupt request numbers, I / O port ranges, DMA
channels, and memory mapped access ranges on the device. After gathering all the
resource requests, the PnP manager decides how best to allocate them so that
everyone can be satisfied, and which resources will be allocated to which driver. These
resources are automatically prevented for the driver by the PnP Manager, of which the
driver is informed via the IRP message IRP MN START DEVICE. Only when this message
arrives can the driver start accessing the hardware, and only using the allocated
resources.

The PnP driver must work according to the PnP Manager. PnP Manager manages the device
in the system as a whole and prompts the controller to operate its individual
devices. For example, a PnP driver must not search for its device when it is loaded
(DriverEntry), but must instead be designed to call the AddDevice function when it
finds a device for the driver. PnP Manager calls the AddDevice function for each
device found that the driver is able to operate. The device is operated by the driver
until PnP Manager stops its operation.

The PnP driver should be as flexible as possible. If the device can work with different
By configuring hardware resources (for example, it may use different IRQ
interrupts or different I / O port ranges), the driver should provide all possible
combinations of PnP Manager resources to provide the best possible way to meet
all resource requirements.

4.4 How the driver works
Now let's try to roughly describe the operation of the PnP driver in Windows.

The driver is started automatically at system startup or manually at the user's initiative. When it
starts, it registers the addresses of several important routines, which creates an interface between the
operating system and the driver. By calling these routines, the operating system communicates with
the driver. It then goes into a waiting state.

According to the information stored in the registers during driver installation, PnP Manager
knows which devices it is able to operate and what hardware resources it needs. If such a device is
found on the computer, the driver is notified by calling the AddDevice routine.

For each device served, a Device Object is created in the AddDevice routine, which
represents this device and thus allows one driver code to operate multiple

25

Profibus DP Master on PC Pavel Trnka

device. However, the driver does not yet have the hardware resources allocated to the device, so it
goes back to waiting.

Access to the hardware is allowed only after the driver receives an IRP MN START DEVICE message
from the system. The driver then determines the allocated resources and initializes the hardware. From
this point on, it can begin to meet I / O operation requirements.

A pp lic at io ns

W in 3 2 API ca lls

W in 3 2

S ubsys te m

U ser M ode

K ernel M ode
S ys te m S erv ic e In te r fa ce

I / OM anager

IR P passed to dr iv erd is pa tc hrout in e
D ev ic e
dr iv er

HAL ca lls

H ardware A bstract io n L ayer

P la t fo rm spec if ic operat io ns

H ardware

Figure 4.2: IRP processing

If an application wants to send a request to a driver, it must first open a file handle to it, using
the command CreateFile with a registered name, forming the driver identifier, such as "\\. \ProfiM
". It then sends requests to the driver via this handle. These access the I / O Manager via the API
(Figure 4.2). It creates IRP packets, which it sends to the driver. He starts processing requests and
holds the IRP for this time. After the request is processed, the IRP is marked as finished and the
result is stored in it. The I / O manager then sends the result back to the application. The use of
IRP packets simplifies the handling of requests by the driver, as their management is provided by
the I / O manager.

I / O operations performed on a physical device are performed through a Hardware
Abstraction Layer (HAL), which forms an abstract layer that hides the implementation details of
each specific hardware platform.

26

Profibus DP Master on PC Pavel Trnka

4.5 Priority levels (IRQL)
A very important feature for all driver routines is the priority level at which they are run.
Unlike common programs in user mode, individual driver routines are run at different
priority levels (IRQL - Interrupt request level). What level the routine runs at is essential
becausedetermines what kernel functions it can call. For example, some memory
allocation functions, synchronization functions (KeWaitForSingleObject,. . .)or, for
example, registry access functions. The restrictions are approximately so that routines
run with a higher priority level do not use functions that require paged memory (reason
in section 4.8) or those that are time consuming. This corresponds to the system's
requirement to run routines with increased priority as quickly as possible.

The level at which a function can be called thus becomes an integral feature of all kernel functions
that the driver can call and must be taken into account each time it is used. This level can be found in
the documentation [12].

The level at which the routine runs is determined for each standard driver routine by
the system or hardware level (DIRQL) at which the physical device interrupts (Table 4.1).

IRQL Mask interrupts Standard routines running at this
level

PASSIVE LEVEL none DriverEntry, Unload, AddDevice,
Dispatch routines and driver-
created threads.

DISPATCH LEVEL Masks interrupts with
DISPATCH LEVEL. Over-
however, interference from
physical devices may occur.

DpcForIsr,
CustomDPC,
StartIo routines.

CustomTimerDpc,
IoTimer, Cancel,

DIRQL All
with IRQL≤DIRQL. A
higher priority interrupt
may occur.

interruption ISR and SyncCritSection

Table 4.1: Priority levels

4.6 Basic structure and routines of Legacy drivers
First, we will describe the structure of the Legacy driver and in the next section we will show its
extensions to support PnP. The Legacy driver consists of several basic routines in its simplest form
(Figure 4.3). On the one hand, they cooperate with the I / O Manager, through which all

27

Profibus DP Master on PC Pavel Trnka

communication between the driver and the applications, and on the other hand, the driver accesses the
hardware being serviced.

D r iv er

D r iv e rE ntry

U n lo ad

D is pa tc h R out in e

I / O

M anager
C rea te R out in e R

ead R out in e W r ite

R out in e IO C ontro

lR out in e

C lo se R out in e

D e fe rred P rocedure C a ll (DPC)

In te rrupt S erv ic e R out in e (IS R)

In te rrupt

HW

Figure 4.3: Legacy driver structure

4.6.1 DriverEntry

The basic routine of each driver. The I / O Manager calls DriverEntry immediately after the driver
is loaded and started. As a parameter, it passes a pointer to the Driver Object by which I / O
Manager represents a driver instance. DriverEntry sets the pointers to standard and
Dispatch routines representing the entry points of driver handlers that allow the I / O
Manager to interact with the driver:

DriverObject-> MajorFunction [IRP_MJ_CREATE] = CreateRoutine;
DriverObject-> MajorFunction [IRP_MJ_CLOSE]
DriverObject-> MajorFunction [IRP_MJ_READ]
DriverObject-> MajorFunction [IRP_MJ_WRITE]
DriverObject-> MajorFunction [IRP_MJ_DEVICE_CONTROL] = IOControlRoutine;
DriverObject-> DriverUnload = UnloadDriver;

= CloseRoutine;
= ReadRoutine;
= WriteRoutine;

28

Profibus DP Master on PC Pavel Trnka

Each handler can have its own function, but it is customary to create one Dispatch
routine that handles all requests (the request type is passed as one of the parameters by
the I / O Manager).

Furthermore, in DriverEntry, the driver allocates and initializes the necessary memory
structures for its operation (see 4.8). A peculiarity is the usual need of the driver to get space
in the so-called nonpaged memory, or such memory that is not paged by the system, so it is
never stored on disk. This is necessary especially for fast access to memory in high priority
states (IRQL), when access to data stored in the part of the memory that was paged would be
delayed or not possible at all (eg in the interrupt handler - ISR).

In DriverEntry, the driver usually also finds out its configuration stored in the registers (see
4.9). There are two ways to get there. They can either be stored in the location specified by one of
the parameters with which the I / O Manager calls DriverEntry or in the location specified from the
Driver Object according to the itemDriverObject→HardwareDatabase.

Unlike PnP drivers, Legacy driver performs device hardware initialization already in
DriverEntry. However, they must also obtain hardware resources from the system before the
first direct access to the device. This means obtaining I / O ports, memory ranges with
mapped device registers, or interrupts through which the device will be accessed directly. In
Windows NT 4.0, they are managed through registry entries that are located in\Registry\
Machine\Hardware\ ResourceMap. To obtain them, the driver calls the function
IoAssignResources, IoReportResourceUsage and HalAssignSlotResources. If no conflict
occurs when requesting resources, driver requests are added to the registry. This mechanism
prevents drivers from taking over other drivers' already used resources, causing a conflict on
a device that has already been initialized by another driver.

After obtaining the resources, the driver puts its device into its initial state and usually
prepares it to generate an interrupt. In order to process an interrupt, it still needs to use
a functionIoConnectInterrupt register an interrupt handler (ISR).

4.6.2 Unload

A driver that can be removed at run time must have an Unload routine. It is responsible for
releasing all system objects and resources that the driver has taken for its operation. Only
then can the driver be removed. Deactivating the driver can cause a fatal error if an
inappropriate interference sequence is used. For example, at the beginning of the Unload
routine, an object is deleted, then before the interrupt is deactivated, the ISR is called and the
deleted object is used in it, which causes a critical system error. It is therefore advisable to
follow the procedure below:

1. Disable all interrupt sources on physical devices. Subsequently, disconnect the interrupt
handler from them by calling the functionIoDisconnectInterupt.

29

Profibus DP Master on PC Pavel Trnka

2. Ensure that no other driver routine continues to use the resources we want to
free - for example, by calling IoStopTimer we deactivate the IoTimer driver
routine call, etc.

3. Release system objects and resources that were prevented during driver
initialization or operation.

4.6.3 Interrupt Service Routine (ISR)

One of the most important routines of a physical device driver. An ISR is a handler that is
invoked when a device that the driver operates generates an interrupt request (IRQ). It is
called in increased priority mode (IRQL = DIRQL, ie the level specified as a parameter when
calling IoConnectInterrupt) and thus masks interrupts of the same and lower priority level.
This places high demands on interrupt processing speed. The ISR should run as quickly as
possible so that the system does not lose masks. Typically, the ISR only reads the device
status along with the most important data, forces the device to stop generating interrupts,
and requests a DPC, or Deferred Procedure Call, a function that is later invoked by the kernel
and completes the service at a reduced priority level (IRQL = DISPATCH LEVEL). interruption.

The reason for using the DPC routine is also that some functions cannot be called in the high
priority mode in which the ISR is running and so they can only be executed in the DPC.

An example is data reception via a serial channel with FIFO memory. If the FIFO memory is full up
to a certain limit, the serial channel will generate an interrupt indicating the arrival of data. This
triggers an ISR that does not read the data from the FIFO memory directly, but only stores the interrupt
type identifier, requests DPC, and quickly returns control. The system then invokes the DPC routine
(already running with a lower priority level IRQL = DISPATCH LEVEL), which completes the interrupt
handler by reading the received data from the FIFO memory. The DPC is already running at a lower
priority level, so it can process the data and possibly pass it to the application layer.

A problem with using DPC as a routine to complete interrupt handling after an ISR has
occurred is the long time delay between the ISR call and the DPC. Therefore, in some time-
consuming cases, we do not avoid having to perform the entire interrupt handler in the ISR.

4.6.4 Deferred Procedure Call (DPC)

Deferred Procedure Call - The meaning of this feature for use with an interrupt
handler (ISR) was described in the previous paragraph. DPCs designed to complete
interrupt handler processing are also called DpcForIsr.

30

Profibus DP Master on PC Pavel Trnka

4.6.5 IoTimer
If the driver needs a function that would be called at regular intervals, then the system offers
IoTimer routines. The smallest time interval with which it can be called is around 10msand is
usually used to detect time-out I / O operations on the device or to periodically check the
operation of the driver (Watchdog).

When using the standard IoTimer routine, the system guarantees its regular calling at
intervals of approximately one second. The function is used to start a periodic call to the
IoTimer routineIoInitializeTimer. This function is nothing more than a DPC routine called
after an interrupt from the system timer.

4.6.6 Dispatch Routine
If the driver-ready I / O Manager has an IRP packet request, then it calls the registered
Dispatch routine. She takes it over and starts processing it. What the request is is determined
by the main function code of the IRP packet (IRP MJ xxx). One dispatch routine can be
registered for each master function code. Often, however, instead of several separate
routines, the driver has only one routine, which the IRP processes according to the main
function code.

In general, drivers handle the following requests, which are defined by these main
function codes:

IRP MJ CREATE means an application request from user mode to create a file
handle, which will represent the communication channel associated with the driver.

IRP MJ CLOSE indicates that the application is closing communication with the driver.

IRP MJ READ means an I / O request to transfer data from a physical device to a system.

IRP MJ WRITE means an I / O request to transfer data from the system to a physical
. In the IRP object, there is a pointer to the buffer that the application provided for the required data.

IRP MJ DEVICE CONTROL indicates a request to the driver to execute a certain
operation of the device. This is specified by the IRP auxiliary code MN xxx. Their meanings
are either defined by the system or they can be custom codes defined specifically for a
given driver and device.

4.7 Driver structure with PnP support
If we want our driver to have PnP support included, then we need to add a few more
routines to it (Figure 4.4). In addition, the importance of several routines

31

Profibus DP Master on PC Pavel Trnka

standard, mainly due to a different way of working with hardware resources.

D r iv er

D r iv e rE ntry A dd D ev ic e

U n lo ad D is pa tc h P n P

START _ DEV IC E

D is pa tc h R out in e

I / O

M anager
C rea te R out in e R

ead R out in e W r ite

R out in e IO C ontro

lR out in e

C lo se R out in e

P n P
M anager

D e fe rred P rocedure C a ll (DPC)

In te rrupt S erv ic e R out in e (IS R)

In te rrupt

P resistance P n P

HW

Figure 4.4: PnP driver structure

4.7.1 DriverEntry
If we add PnP support, then the DriverEntry routine is only responsible for initializing the
driver, which, in addition to defining entry points for handlers, also means initializing
data structures common to all devices supported by the driver. However, the hardware
initialization itself moves elsewhere. The driver is informed about the found device
by calling the AddDevice routine, but even in that it does not yet access the hardware.

DriverEntry is called only for the first occurrence of a device supported by the driver. For example,
if there are two expansion cards on the computer that the driver supports, when the first one is found
by the PnP Manager, the driver is loaded, DriverEntry is called, and then AddDevice. When the second
card is found, the driver is already initialized, so adding the card starts from AddDevice. For the
AddDevice routine, the DriverEntry for the I / O Manager defines a pointer to the entry point:

DriverObject-> DriverExtension-> AddDevice = DDAddDevice;

32

…

Profibus DP Master on PC Pavel Trnka

and also adds pointers to utility functions for PnP, Power Management and System Control:

DriverObj-> MajorFunction [IRP_MJ_PNP] DriverObj-> MajorFunction [IRP_MJ_POWER]
DriverObj-> MajorFunction [IRP_MJ_SYSTEM_CONTROL] = DispatchSystemControl;

= DispatchPnp;
= DispatchPower;

4.7.2 AddDevice

Routine necessary for every PnP-enabled driver. As mentioned, it is called when it finds a
device that the driver supports. When invoked, it creates a Device Object that represents this
physical, logical, or virtual device. All information about the driver created by the Device
Object is stored by the I / O Manager in the appropriate Driver Object, which represents the
driver instance. Therefore, AddDevice only prepares before initializing the found device.

4.7.3 DispatchPnP

Dispatch routine receiving IRP packets with the main IRP MJ PNP function code, which are sent to the
driver by the PnP Manager. The requirements relate to the state of the PnP device. The most important
is the IRP packet with the secondary function code IRP MN START DEVICE. Along with it, the driver gains
hardware resources and can start communicating with the device.

4.7.4 Interrupt Service Routine (ISR)

With the addition of PnP support, the return value of the ISR routine becomes more important. In
retrospect, it tells the system if the interrupt was for us and if we served it. This is because in PnP
systems, it can happen that the interrupt vector is shared by multiple physical devices. The
necessary requirement for the ISR routine is then to determine immediately after its invocation
whether the interrupt was generated from the device it serves (usually by reading the interrupt
identification register - for example for the IIR UART register). If not, it must return FALSE for the
system to invoke another interrupt handler. Failure to do so may result in system malfunction.

4.8 Using memory with the driver

Windows uses so-called virtual memory. This allows it to use more RAM than is
actually physically installed. It achieves this by dividing the memory into smaller parts
- pages that can be stored in secondary memory, usually a hard disk, if needed. This
snoozing or paging is common for

33

Profibus DP Master on PC Pavel Trnka

programs and data in user mode. For programs in kernel mode, some parts of the memory need to be
protected from paging.

Specifically, for example, in an interrupt handler, we cannot use any data that is not
protected against paging. If this data were being stored on disk and an interruption
occurred, it would be necessary to read it back into memory from disk. However, this is time
consuming and we cannot afford it because the interrupt handler runs in high priority mode.

In these cases, memory allocated from so-called non-paged pool is used for data. For
our case, ie writing a driver, it is customary that most global variables and data are
stored in a single structure, which is attached as an "Device Extension" to an object that
represents a specific instance of the controlled device (Device Object). "Device Extension"
is non-paged and is created during a callIoCreateDevicein the AddDevice routine. This is
called when adding a physical device and its parameter is the amount of non-paged
memory required for "Device Extension".

The Device Extension is accessible from all driver routines and thus forms the
basic area with variables and data. If we need to allocate non-paged memory while
the driver is running (creating queues, buffers, etc.) we can use the kernel function
ExAllocatePool with parameter PoolType set to NonPagedPool. It will try to allocate,
but keep in mind that the "non-paged pool" is a limited system resource and the
allocation may fail.

4.9 Configuration location in the registry

In Windows NT 4.0, the information in the registry related to the driver is related to the service
that is registered with the driver. We can save the configuration to a branch\Registry\Machine\
System\CurrentControlSet\Services\DriverName. This is also the path that the driver obtains from
the system as a routine parameter DriverEntry called when the driver starts the system.

In contrast, for a PnP driver, the configuration belongs to the specific device itself and is
stored in the device entry in the registers. For example, the path to them may be for serial port
COM2\Registry\Machine\System\CurrentControlSet\Enum\ACPI\PNP0501\2\Device Parameters.
As you can see, the location is no longer so obvious and therefore the system function is used to
access the driver configuration IoOpenDeviceRegistryKey, which opens the correct registry branch
according to the device.

4.10 Debuggers

Powerful debugging tools are included in almost all today's programming packages (eg C ++
Builder). They allow you to monitor the program, catch errors, step through the program,

34

Profibus DP Master on PC Pavel Trnka

add debug points, etc. A programmer who is used to these tools will have a hard time finding
their equivalent when writing drivers, especially if he writes a driver for a physical device and
not, for example, a driver for the disk file system.

There are several reasons. First, the drivers run in a special mode as part of the
kernel. Errors at this level in the vast majority cause a system crash. In addition, most
drivers are tied to a physical device that must be operated in near real time, making it
almost impossible to pause a program for debugging purposes. Another problem is
caused by the fact that driver routines (interrupt handling, dispatch routines, DPC
routines, etc.) can be executed simultaneously and at different priority levels.

The DDK includes a debugger WinDbg from Microsoft, which is very cumbersome and
requires two computers connected by a serial line to debug drivers. A better solution is a
debuggerSoftICE from Compuware. It allows you to debug drivers on a single computer and
its options are wider.

Despite various complex debuggers, the most commonly used way to control the operation of the
driver is to print text strings directly from the program using the function DbgPrint (ntddk.h), for
example:

DbgPrint ("ProfiM: Allocated Resources Port = 0x% x Irq =% d",
DeviceExtension -> Port, DeviceExtension -> Irq);

This call causes the string to be written to standard debug output. It can be displayed
using a freely distributable programDebug View from Sysinternals, which is on the
enclosed CD.

4.11 INF File
An essential part of the driver for Windows 2000 / XP operating systems is the so-called
INF file, which is a text file that contains all the necessary information for installing the
driver in the system. It lists which files are part of the driver and where to copy them,
which devices the driver supports, information for writing settings to the registry, and
much more.

The structure of the INF file for the driver is quite complex and complex, so it pays to use the
tools for the first version geninf.exe, which is part of the DDK. After generating several dialog
boxes with basic information about the driver, it will generate a rough skeleton, but manual
editing will still not be avoided.

Important information for the operating system that the INF file contains is a list of devices
that the driver supports and with which it can work. For example, this section might look like this:

35

Profibus DP Master on PC Pavel Trnka

[ControlFlags]
ExcludeFromSelect = PCI \ VEN_1760 & DEV_8004
ExcludeFromSelect = PCI \ VEN_1760 & DEV_8005
[Tedia]
% PCI \ VEN_1760 & DEV_8004.DeviceDesc% = PCI_950A,% PCI \ VEN_1760 &
DEV_8005.DeviceDesc% = NoDrv, PCI \ VEN_1760 & DEV_8005

PCI \ VEN_1760 & DEV_8004

It tells the operating system that the driver supports PCI devices with manufacturer numbers
1760 and device numbers 8004 and 8005. These numbers uniquely identify each PCI bus device
and are assigned to hardware manufacturers by the international PCI-SIG.

4.12 Property Page

If we have a driver created, we almost certainly need to set its working parameters in
some way. To do this, it is best to create a so-called Property Page. This allows us to add
several pages to the device properties window (we can access it via the Device Manager
by opening the properties window for a specific device - Figure 4.5).

Figure 4.5: Property Page

36

Profibus DP Master on PC Pavel Trnka

Another option is to write your own application, which will allow you to set parameters after
its launch. However, the property page has several advantages:

• One driver can handle multiple devices - the Property page is automatically used
for each instance and its specific parameters.

• When opening the Property page, we get the path to the registers to the saved device
parameters from the system.

• It is not necessary to search for an application for setting parameters. The property page is directly

accessible from the Device Manager.

The property page is a dynamic-link library that has an operating system-defined
access point:

BOOL APIENTRY PropertyPageProvider (LPVOID Info,
LPFNADDPROPSHEETPAGE AddFunc,
LPARAM Lparam)

If the system needs to display our Property page, it loads the dynamic library and calls this
function. Its task is to create a dialog window, which is added as a bookmark to the device properties
window, then reads the parameters stored in the registers and starts processing messages from the
system, which are extended for the Property page message loop compared to the normal window.

37

Chapter 5
Line layer implementation - ProfiM

The behavior of the line layer is very well described by the state machine, as shown in
Chapter 2. This is also the way in which the line layer can be implemented. It is
created as a software state machine with ten basic states (see section 2.2.3), which is
controlled by the following events after its start:

• receive request from FLD user interface (interface for higher layers or direct access to
FDL)

• receiving a character from the bus (receiving the entire frame)

• timer event (time-out expiration, for example while waiting for a response or
monitoring bus activity)

These events cause an appropriate response and transitions between states. Although the principle of
the state machine is very simple, it can also implement very complex and complex behavior.

5.1 Program implementation
In the first phase, the DP master was created as a common program for user mode. Standard
operating system services were used to access and control the serial port. The first more serious
problem, which appeared right at the beginning, was the control of the RS 232/485 converter. The
main problem was switching the direction of data flow, which caused constant problems.

Windows seems to offer a solution to control the converter, as described in Chapter 3.1. Using the
serviceSetCommState, setting the parameters of the communication device, automatic direction switching
can be activated by the RTS signal (by setting the parameterfRtsControl to the value of RTS CONTROL
TOGGLE). This should ensure that the direction of the transmission is switched after the data is written to the
port and that the reception is switched immediately after the transmission is completed. Little

38

Profibus DP Master on PC Pavel Trnka

however, the documented fact is that this switching has long delays in switching back
to receive.

It is not implemented in hardware (UART circuits up to 16C950 do not offer this option), but
instead a function connected to a system timer with a long period is used to control the direction.
It is triggered at intervals of approximately 20ms and, if it detects that the transmission has
ended, it switches to receive. However, the time delay that can occur between sending the last
character of the frame and switching back to receive is too long to use on Profibus. The
interrogated station on the bus can then start sending a response to our request while the
outputs of the converter are still holding the bus, which will cause a collision.

Manually switching the transmitter's direction of transmission also proved almost
impossible for the reasons described in 3.1; Therefore, the DP master has been
rewritten to the driver to run in kernel mode. This also made it possible to later add
support for PCI plug-in cards with UART circuits as an alternative to connecting the
Profibus at high baud rates.

However, with the transition to the driver, it was necessary to rewrite the entire
source program from C ++ to C. The first version was built using object-oriented
programming, but C does not allow this, so it was necessary to delete objects and
return to non-object access.

The driver was first created only for the Windows NT 4.0 operating system, which does
not require PnP support for the drivers. It was added later, so it can be used for Windows
2000 and XP operating systems.

5.2 Profibus requirements

To enable work with Profibus, we generally need to ensure the full ability to
communicate via the RS-485 bus and, above all, to be able to time with short periods,
which is a big problem if we need to achieve such periods in Windows. To give you an
idea of the lengths of these periods that we need to achieve, let's take the example
of a Profibus running at 1.5Mbps. All time intervals for Profibus, such as time-outs,
maximum delays and necessary time delays, are given with the unittbit. This is defined
as the interval given by the transmission length of one bit over the bus,
or the inverse of the baud rate tbit = 1/(baud rate in bps). For

.1.5Mbps speed coming out tbit = 0, 67.s. From a practical point of view, given the
The accuracy of the resolution is about ten times smaller, so for a speed of 1.5Mbps we need to
reach a minimum period of about 6.s, which is unattainable from a Windows user mode
perspective. There is a minimum achievable period in the order of milliseconds.

The only useful feature that Windows offers for working with short time intervals

39

Profibus DP Master on PC Pavel Trnka

valy is Perfomance Counter. It allows you to detect high-resolution moments. It is a
counter whose time resolution reaches an accuracy of around 1 on most computers.s,
which is sufficient for our needs.

The reason why ProfiM managed to ensure the generation of such short periods is the
effective use of the possibility of interrupts from the serial port with the connected RS 232/485
converter, or interrupts from the expansion card. We can afford this mainly due to the fact that
ProfiM is written as a driver with direct access to the hardware.

5.3 Converter control and its use for timing
As already described in section 3.1 for the standard serial port on the PC, we do not have an
interrupt from an empty output shift register. We therefore need to help by using the hardware
features of the converter (Figure 3.1), such as loop-back returning all data transmitted by the TxD
output to the RxD input (when the converter is switched to transmission) and the connection
between the TxD output and the DSR input.

The use of the serial port together with the converter, which provides access to RS-485 and at the same
time sufficiently fast timing, solves the following modes of operation:

Broadcasting

characters

Before starting the transmission of the frame (block of data), switch the converter to
transmission (RTS = 1). Thanks to the loop-back in the converter, each sent character
will also be received back (Figure 5.1a). With the arrival of each interrupt indicating
the reception of a character, we determine whether it is the last character of the
frame. With its arrival we can switch the converter back to receive (RTS = 0). Thus,
the switch cannot occur at an inopportune moment (in the middle of the last
transmitted character), because we do it only after receiving an interrupt indicating
the return reception of the last character, when the character had to be sent and
not after an interrupt indicating an empty transmission register.

Receiving characters RTS is at logic zero, which means that the outputs of the bus drivers are in a
high impedance state and the serial channel can receive characters from the
bus (Figure 5.1b). However, this state is hardly used during ProfiM's work,
because if we do not transmit, a time-out always runs, for example a time-out
while waiting for a response, which corresponds to the following mode.

Timing
with the current
receiving characters

The most demanding and also the most important mode. In it, the
converter is switched to receive (RTS = 0), so the loop-back loop is
interrupted and the converter can receive characters from the bus (Figure
5.1b). At the same time, however, it is required to measure a time interval
(usually time-out).

40

Profibus DP Master on PC Pavel Trnka

By timing from the serial port, we get a resolution of approximately
11tbit, which corresponds to the interval required to send one character,
which has one start bit, one stop bit and one even parity bit in addition
to the eight data bits. Required interval in unitstbit so divide by 11 and
the resulting value then determines how many characters need to be
sent to measure the required interval. Since the loopback loop is
broken, we can start sending arbitrary characters to the converter
- For our purposes, as we will see later, the sign is broadcast 0x00. These do not
reach the external bus and do not interfere with the reception of characters.

Again, we need to solve the problem of switching the direction of data
flow on the converter. In this mode, we do not transmit on the external bus,
but after receiving the required data or timeout, we must ensure a correct
switch to the transmission that usually follows.

The completion of the transmission of each character is indicated by an
interrupt announcing an empty transmission register, thus receiving a signal to
transmit the next character. When we get an interrupt announcing the sending of
the last character, we have a problem. Although the transmission register is empty,
the character is still output from the output shift register. The loopback solution
from the character transmission mode is not applicable here because the loop-back
is disconnected. Immediate switching of the direction with the arrival of the last
character would cause the timing character to get on the bus, which is
unacceptable.

To solve this problem, there is a jumper between the TxD output and
the DSR input in the converter connection (Figure 3.1). This input allows us
to generate a so-called "modem interrupt". We will use it as follows. After
receiving the interrupt from the last transmitted character, we enable the
interrupt from the modem. This interruption is due to the fact that the
transmitted timestamp has a value0x00, arrives when the leading edge of
the stop bit is sent to the converter. We can already afford to switch
direction to broadcasting. A single stop bit value means the idle value on
the RS-485 bus. After switching, we will disable the interrupt from the
modem so that the next transmitted character does not cause us an
interruption.

Synchronization
gap

It is used if we need to insert a time delay before the transmitted data
frame. For example, for each query frame, the Profibus standard
requires a delay of 33tbit. It works similarly to the previous mode of
operation, only it does not expect to receive any characters.

In fact, ProfiM works by constantly sending characters to the converter. This is
either data intended for the external RS-485 bus, ie Profibus, or these are timing
features that do not pass on the external bus.

41

Profibus DP Master on PC Pavel Trnka

„1" BeforeinOdník „0" BeforeinOdník
RTS RTS

RxD RxD AND/ B

TxD AND/ B TxD

DSR DSRRWITH- 232 RWITH- 485 RWITH- 232 RWITH- 485

(a) broadcastsnízn andat b) prutm ofnandů + časoyounand

Figure 5.1: Use of RS 232/485 converter

If we use an expansion card with a UART circuit type 16C450 to 16C750, then the method of access
to the Profibus bus and the method of timing are the same. The only difference is that some cards
already have an RS-485 output, but the need for software control of the direction remains (due to the
possibility of timing).

5.4 Timing with 16C950 circuit

This circuit is much easier to work with, as it is a circuit that provides an interrupt
from an empty output shift register. This eliminates all the complex software
constructions that tried to circumvent this shortcoming.

On the other hand, the direction of data flow on the RS-485 bus is still program-controlled and the
principles used for timing remain. All that is needed is a hardware loop-back and a jumper between the
TxD output and the DSR input, which were the hardware resources of the converter that made it
possible to replace the interrupt from the empty output shift register.

The use of this circuit is very reliable and the baud rate limit is only a matter of
processor performance and the maximum allowable CPU load.

5.5 Principle of ProfiM operation

The block diagram of ProfiM is shown in Figure 5.2. The central block is the FDL layer
state machine. All other parts are subject to this.

The bus is accessed via the "Tx / Rx control, timing" block. It forms an interface to the physical
layer and therefore its implementation depends on the hardware used, because it directly
accesses it and uses its capabilities. In general, the function of this block is to provide access to
the bus, especially when it is necessary to use a converter (port with RS-232 standard).

42

Profibus DP Master on PC Pavel Trnka

For the state machine, it provides frame transmission, indication of the event of receiving a character
from the bus and, above all, provides timing of short intervals, for which it uses the possibilities of the
hardware layer and a possible converter (especially the possibility of hardware interrupts). In the
version of ProfiM, which is a part of this diploma thesis, this block supports standard RS-232 serial port
and PCI expansion cards with OX16PCI954 circuit.

On the other hand, the FDL layer is oriented towards higher layers. It consists of a static
libraryfdl rb.lib (the name is chosen to maintain maximum compatibility with the Siemens
solution [6]), which is linked to programs requiring communication with the FDL layer. The
program first opens the communication channel to the FDL layer and then can start sending
its requests (description in chapter 6). Requests are stored in two queues according to
priority (high / low).

When our master obtains an initiative on the bus (by obtaining a token), it selects one
request from the request queues and starts processing it. Most requests involve bus
communication, but some are only local (for example, master configuration or SAP
activation). After the request is processed, the result is added to the result queue. In addition
to responding or acknowledging a favorably processed request, this may indicate an error or
time-out.

The results are selected from the queue by the application via the FDL layer API. An important
feature in the communication between the application and the FDL layer API is that from the
application's point of view, each open communication channel with the FDL layer has its own
queue of requests and results. This means that one FDL layer (one DP master) can be shared by
multiple applications at once without any conflict between requirements and results. However,
the resources that the DP master offers, such as SAP access points, must be shared.

As we implement a master station, the FDL layer state machine provides not only services for
higher layers but also its share in the administration and management of communication on
Profibus. These include monitoring bus traffic to detect error conditions, creating and updating a
list of active LAS stations and a GAP list, which monitors the occupancy of individual Profibus
addresses for the address range belonging to our master station.

43

Profibus DP Master on PC Pavel Trnka

DPU withis
1 . . . DPU withis

n
INyšwithív rstvyD Pm andwithternebO

pRomeá kOmatnikandCe sF DL

DP
Sc heduler

Slave Handler
DDLM
Event

FDLA ppfaceandtion
1

FDLA ppfaceandtion
nINywithwithin vrstvy

pgenusP- mandwithter
. . .

APIF DLv rstvy

ProfiM ANDPI (kOmpandtiblní ses pecifikandCin Siemens)

OinladandC

WITHANDP
List

GANDP
ListTOOnfigatraCE

WandtchdOG

Fronta
pOfordandvkat

WITHtheinOiný aatit mandt
FDLv rstvy

Fronta
up icetoat

Handrdwandroině záv isla
inrstvao inladandceTx / Rx control

CandwithOyouher

Breakwithenand

Handrdwandre

UART

Forfibatwith
NetwOrk

Figure 5.2: ProfiM block diagram
44

Profibus DP Master on PC Pavel Trnka

5.6 Watchdog
A watchdog has been added to ProfiM to increase reliability. It monitors the master's activity and
resets it if it is not used for a long time.

It is practically implemented as a routine, which is called by an independent
system timer at regular intervals of approximately one second. An activity flag
(variable) is used to detect master inactivity, which is set at regular intervals during
master action. After calling the watchdog routine, this flag is checked and reset
immediately. If this flag is not set during the watchdog check, it means an error and a
master reset is performed.

The watchdog is mainly used in case of errors in the interrupt system or in case of using the
converter, when disconnecting the converter from the port stops the operation of the state
machine, the operation of which is directly dependent on the converter (does not apply to plug-in
cards with 16C950). The watchdog then restarts the master after reconnecting the converter.

5.7 CPU load
Since ProfiM does not use any special hardware when implementing the Profibus DP master,
only the processor bears the entire load. In addition, the specific feature of Profibus is that
the bus operation does not stop even in cases where no data is transmitted. Each DP master
station must participate in the token logic circle, look for changes in its corresponding GAP
address space, and in addition constantly monitor traffic and analyze all frames.

The graph of the processor load measured with ProfiM using different baud rates is shown in
Figure 5.3, the average numerical values are summarized in Table 5.2. Processor load values
were measured on a computer with an AMD Athlon XP 1600+ processor and a Tedia PCI-1482
serial port expansion card with an OX16PCI954 circuit.

As can be seen, CPU usage is not a bigger problem for lower speeds. Especially when
using the standard serial port, where we have only speeds of 9600bps and 19200bps, the
increase in load is almost non-existent. However, if we want to work at high transmission
speeds, it is necessary to take into account the increased load and possibly adjust the time
parameters of the network, which will allow longer time delays, such asTSL and maxTSDR.

Baudrate [kbps] 9.6 19.2 45.45 93.75 187.5 375 500 750 1500
CPU load [%] ∼1% ∼1% ∼2% 6% 10% 17% 20% 25% 50%

Table 5.2: CPU load by baud rate

45

Profibus DP Master on PC Pavel Trnka

Figure 5.3: CPU load according to baud rate

46

Chapter 6
FDL layer application interface

The FDL application interface of the ProfiMu layer is created according to the standard
defined by Siemens [6]. According to this standard, communication with the FDL layer
takes place using a unified data structure called Request Block (RB). This structure is a
kind of universal framework that can represent not only any request, but also the
response to a request or event flag. The size of the Request Block is approximately 600B
and contains many items, only some of which are currently in use.

The communication takes place in such a way that the application (higher layer of the DP master or
directly of the FDL application) fills the Request Block structure to pass the Request to the FDL layer.
Depending on the type of request, only certain items of this structure are met and others are left
unused. Subsequently, the structure is sent to the FDL layer, which performs the given action as
required and sends the Request Block back to the application as a response (Confirmation). It is sent
both in the case of successful processing of the request and in the event of an error.

The Request Block is also used as an event indication in the FDL layer (Indication). If an event
occurs (eg data arriving from another master), the FDL layer sends a Request Block to the
application with the appropriate settings according to the type of event.

The application interface consists of five simple functions SCP_xxx for direct communication with
the driver using the Request Block structure:

SCP open (char * name)
Opens the communication channel between the application and the FDL layer.

Parameters
on me specifies the driver name. The first instance of ProfiM is named "\\.\

ProfiMÿ next then „\\.\ProfiM1ÿ, „\\.\ProfiM2ÿ. . .
Return value
The function returns a handle to the communication channel between the driver and the
application. This value is used by all other functions to call the driver. If the handle cannot be
created, the function returns a system-defined valueINVALID HANDLE VALUE.

47

Profibus DP Master on PC Pavel Trnka

SCP send (int handle, UWORD length, char * rb)
Sends an FDL to the Request Block layer representing the request.
Parameters

handle
* rb
length

communication channel opened by SCP open
pointer to the sent Request Block
Request Block length

Return value
SCP SUCCESS
SCP ERROR

the driver received a Request Block.
an error occurred during transmission. The specific error code is returned by the function
SCP get wrong.

SCP receive (INT handle, UWORD timeout, UWORD * data only, UWORD length,
CHAR * buffer)
This feature allows data, request results and event indications to be retrieved from the FDL layer. The
transmitted data is again in the form of a Request Block and the application can use it according to the
parameter settingstimetou wait synchronously or asynchronously.
Parameters

handle
timeout

communication channel open via SCP open
determines in milliseconds how long the function will wait for the result. In
addition to the number of milliseconds, values can be usedSCP NOWAIT, which
causes the data to be returned only if it is already available at the time the
function is called and will not be waited for. Another possible value isSCP
FOREVER,which causes the function to wait until the result is available returns the
length of the data written to the buffer
buffer size for received data - should be at least the size of a
Request Block
buffer pointer for returned data

* data only
length

* buffer
Return value

SCP SUCCESS
SCP ERROR

the Read Block was successful.
an error occurred while reading. The specific error code is returned by the function
SCP get wrong.

SCP close (int handle)
Closes and releases the communication channel handle to the FDL layer.
Parameters

handle specifies the communication channel to close
Return value

SCP SUCCESS
SCP ERROR

the communication channel was successfully closed.
error closing communication channel. The specific error code is returned by the
functionSCP get wrong.

48

Profibus DP Master on PC Pavel Trnka

SCP get errno ()
It is called if any of the previous functions fail and return a value SCP ERROR.
Parameters
-
Return value
The return value indicates a specific error code. These error codes are described in [6].

6.1 Line layer services
The FDL layer offers the following data exchange services (details [6]):

• SDA
• SDN
• REPLY UPDATE SINGLE
• REPLY UPDATE MULTIPLE

and the following link layer administration and management services:

• FDL READ VALUE
• SAP ACTIVATE
• RSAP ACTIVATE
• SAP DEACTIVATE
• LSAP STATUS
• FDL LIFE LIST CREATE REMOTE
• FDL LIFE LIST CREATE LOCAL
• FDL IDENT
• FDL READ STATISTIC COUNTER
• AWAIT INDICATION
• FDL EVENT
• WITHDRAW INDICATION

for each of these services, the format and meaning of individual items of the Request Block
according to [6] are determined. ProfiM adds several additional features to simplify the creation of the
correct Request Blocks for these requests. According to the parameters, they create a Request Block
corresponding to the request type and send it to the FDL layer. The most used of these functions are
the following:

SAP activate (int DriverHandle, BYTE sap nr, BYTE ACCSAP, BYTE ACCSTAT,
BYTE SDA R, BYTE SDN R, BYTE SRD R, BYTE priority)
Activates the Service Access Point with number sap no.

49

Profibus DP Master on PC Pavel Trnka

Send SRD Hex (int DriverHandle, BYTE adr, UBYTE ssap, UBYTE dsap, unsigned
char * data, BYTE priority)
Sends a request to the FDL layer to send a data frame to the address station adr with
waiting for a response - Send and Request Data (SRD). Allows you to enter data in
hexadecimal format as a string - eg "B8 12 45 ".

Send SRD Bin (int DriverHandle, BYTE addr, BYTE ssap, BYTE dsap, unsigned
char * data, int length, BYTE priority)
Sends a Send and Request Data (SRD) with binary data to the FDL layer.

Send SDN Hex (int DriverHandle, BYTE addr, BYTE ssap, BYTE dsap, unsigned
char * data, BYTE priority)
Sends a request to the FDL layer to send a data frame to the address station adr no
response - Send Data with no Acknowledge (SDN). With data entered in
hexadecimal format as a string - e.g. "B8 12 45 ".

Send SDN Bin (int DriverHandle, BYTE addr, BYTE ssap, BYTE dsap, unsigned
char * data, int length, BYTE priority)
Sends a Send Data with no Acknowledge (SDN) request to the FDL layer with data in binary
form.

Read FDL value (int DriverHandle, BYTE priority)
Allows you to find out the current network parameters.

FDL life list remote (int DriverHandle, BYTE priority)
Creates a list of active stations on the bus.

6.2 Communication with FDL layer
The method of communication with the FDL layer usually depends on the complexity of the program
(examples are given in Appendix A). In simple applications, a synchronous approach is usually
sufficient. The application sends the request and usingSCP receive with the timeout parameter>0 starts
waiting for the result. During this callSCP receive the program is suspended at the call point until the
FDL layer returns a result for the application. This method is straightforward, but does not allow you to
send multiple requests at once and respond to events in the FDL layer.

Another more complex way is to create a separate thread that only serves to receive Request
Blocks from the FDL layer. He will call when he startsSCP receive with parameter timeout =SCP
FOREVER and starts waiting for the Request Block. Upon its arrival, the Request Block is passed for
processing and the thread calls againSCP receive with parameter timeout =SCP FOREVER.
However, the receiving thread needs to distinguish for whom the result is intended

50

Profibus DP Master on PC Pavel Trnka

(requests can be processed from one application at a time). The Request Block item named is
used for thisuser, which is intended for the needs of the application and the FDL layer retains
its value when processing the request.

A static library is prepared for the use of ProfiM when writing applications fdl rb.lib and a
header file with all the necessary definitions fdl rb.h. The names are chosen in the same way as
the original Siemens libraries. To use ProfiM in a project that originally used a solution from
Siemens, all you have to do is replace these two original files with ProfiM files, change the name of
the device being opened in the functionSCP open from for example the usual "/ CP L2 1: / FLC" to "
\\.\ProfiMÿ and thus the replacement should be ready.

51

Chapter 7
Conclusion

Despite the considerable difficulties that accompanied the development of this thesis, we finally managed to
achieve the goal and perhaps even exceed the original expectations. The result is the implementation of the
Profibus DP Master on a PC, created up to and including the FDL layer. The work allows to connect Profibus
via a serial port with transmission speeds of 9600bps and 19200bps or to achieve higher speeds to use PCI
cards with UART circuit (16C950). With the use of an expansion card, it was possible to reach speeds of up to
3Mbps, but this was only limited by the performance of the processor (for configuration of the test set, see
5.7).

In addition, it was possible to link this diploma thesis with another diploma thesis from
previous years [2], which implemented the higher layers of the Profibus DP Master, thus creating
a fully fledged implementation in all layers up to the application.

It can be assumed that this work could be of interest to companies working in the field, as
the opportunity to implement a Profibus DP Master with minimal costs, as this work allows,
will certainly be attractive to them. Especially since nothing similar has yet been created for
the PC, due to the obvious implementation complexity.

The software implementation was created as a driver for Windows NT, 2000 and XP operating
systems, which can also handle up to several Profibus connections on one computer and can be
used synchronously or asynchronously by several applications.

Because Windows operating system environments are not designed for real-time applications,
due to high baud rates, there is no guarantee that the DP Master made by ProfiM will always
adhere to the standard time intervals. On the other hand, this happens exceptionally, and even in
the worst cases, the Profibus design guarantees a trouble-free resumption of bus operation. This
also results in the impossibility of deploying ProfiM for applications requiring high reliability.

For a good possibility of using the driver by applications, an application interface of the
FDL layer was created, which is compatible with the application interface used by Siemens.
For programs that use it, this allows you to very easily replace the original hardware

52

Profibus DP Master on PC Pavel Trnka

solutions for ProfiM. To exchange, simply copy the ProfiMu static library into the project and change the
name of the device being opened in the functionSCP open.

In diploma theses from previous years, which dealt with Profibus, it was customary to add bus
traffic reports from the Profibus analyzer to the diploma thesis as proof of functionality. However,
this seems confusing and not very convincing, and therefore, as an example of the proper
operation of the Profibus DP master, a simple demonstration application was created in the
engine room on Charles Square, where two models of a belt conveyor and a stepper motor
manipulator are controlled using a computer with ProfiM (Appendix B) . All sensors and actuators
are connected to two input and output modules, which are connected to Profibus as slave units.
In addition, the bus through which communication takes place can be shared with another
master, which is a PLC from Siemens.

7.1 What could be improved or added
• Rewrite ProfiM for one of the real-time operating systems, such as RT-Linux, or

use some real-time extension for Windows. This could ensure high operational
reliability and precise adherence to bus time parameters.

• Add Power Management support to the driver. It is not necessary for proper
function, but it should be part of it.

• Further code optimization will reduce CPU usage, which would allow higher transfer
rates to be achieved.

53

Attachment AND

Example of using ProfiM

If we want to use ProfiM in a program that originally used a Siemens-compatible
interface to access Profibus, or if we want to create a new program, we add the static
library "fdl rb.lib" and the header file "fdl rb.h" to the project.

A simple example

The following code section shows the easiest way to use ProfiM. It is a single-
threaded program that initializes the Siemens ET-200B I / O module and performs
one iteration of the data exchange. All waiting for the resultSCP receive they block
and stop the program.
include "fdl_rb.h"

int DriverHandle;
int SlaveAddress = 13;

void main ()
{

unsigned
fdl_rb
BYTE
BYTE

short length;
rb;
Buffer [256];
out, in1, in2, in3;

/ * Open communication channel to driver * /DriverHandle =
SCP_open ("\\\\. \\ ProfiM");

/ * Activation of SAP access points * /SAP_activate
(DEFAULT_SAP,

BOTH_ROLES,
SCP_receive(DriverHandle, 3000, & length,sizeof(rb), (char *)SAP_activate (62,
ALL, ALL, SERVICE_NOT_ACTIVATED,

ALL, ALL,
BOTH_ROLES,

SERVICE_NOT_ACTIVATED,
high);

& rb);

54

Profibus DP Master on PC Pavel Trnka

INITIATOR, INITIATOR, high);
SCP_receive(DriverHandle, 3000, & length,sizeof(rb), (char *) & rb);

/ * Parameterization frame sent * /Send_SRD_Hex
(DriverHandle, SlaveAddress, 62.61,

"B0 08 09 0B 00 0F 00 00 00 00 00", high);
SCP_receive(DriverHandle, 3000, & length,sizeof(rb), (char *) & rb);

/ * Configuration frame sent * /
Send_SRD_Hex(DriverHandle, SlaveAddress, 62.62, "20 12", high);SCP_receive
(DriverHandle, 3000, & length,sizeof(rb), (char *) & rb);

/ * One iteration of data exchange * /Buffer [0] = out; / * output value * /Send_SRD_Bin
(DriverHandle, SlaveAddress, DEFAULT_SAP, DEFAULT_SAP,

Buffer, 1, high);
SCP_receive(DriverHandle, 3000, & length,sizeof(rb), (char *) Offset =
rb.user_data_2 [0];
in1
in2
in3

& rb);

=
=
=

rb.user_data_2 [Offset];
rb.user_data_2 [Offset +1];
rb.user_data_2 [Offset +2];

/ *
/ *
/ *

1st byte
2nd byte
3rd byte

entry
entry
entry

* /
* /
* /

/ * Communication channel closed * /SCP_close
(DriverHandle);

}

A more comprehensive example

When solving more complex communication problems, it is usually not possible to use a linear
program structure and usually we do not avoid the use of multiple threads. The basis is a thread that
processes all the responses that the FDL layer sends back to the application. This thread works in an
infinite loop, which first waits for a response (timeout = SCP FOREVER) and then, according to the
interviewer's identifier, each response is processed separately. Eventually, the thread goes back in wait
for a response.

The response thread
void ReceiverThread ()
{

unsigned short
fdl_rb

length;
rb;

while (1)
{

/ * Waiting for the result without time -out * /

55

Profibus DP Master on PC Pavel Trnka

SCP_receive (DriverHandle, SCP_FOREVER, & length,sizeof(rb),
(char *) & rb);

/ * Processed received answers according to the interviewer's identifier * /switch (

{
rb.rb2header.user)

case
. . .

case
. . .

case
. . .

RequestorID_1:

RequestorID_2:

. . . :

}
}

}

Requests can then be sent from several threads simultaneously. The reason for receiving
responses in only one thread is the ability to distinguish to whom the response is addressed.
If each requesting thread had its own response, they could be swapped between threads.
The answers are tied to the requirements according to the used DriverHandle and function
SCP receive returns the first response with the same DriverHandle. Another solution, then, is
to open its own handle for each thread. Then there can be no confusion and each thread only
gets its answers.

56

Attachment B
ProfiMu sample application

To demonstrate the functionality of the created Profibus DP Master, a simple demonstration
application was created in the engine room on Charles Square (Figure B.1). Using a computer
with ProfiMem installed, a simple model of two conveyors and a manipulator with stepper
motors, which is placed between them, is controlled. All inputs and outputs of this model are
connected to two remote input and output units (Figure B.2):

• WAGO-I / O-SYSTEM 752–323 16DI / 16DO

• WAGO-I / O-SYSTEM 750–301 8DI / 8DO

These units are connected as slave stations to the Profibus bus, which connects them to the
control computer. The task of ProfiM as a Profibus DP Master is to initialize and configure both
remote I / O units and then start a data exchange, in which it transmits the output images to the
units and at the same time reads back the images of their inputs. In addition, it manages traffic on
the Profibus and, if necessary, shares the bus with another master control station. The input and
output images are provided by the ProfiM application layer to the application, which thus has
conditions similar to those in the PLC and ensures model control.

The ProfiMu application interface can be used by several applications at the same time. This is
demonstrated by another Siemens ET-200B 24DI / 8DO remote I / O station, which is connected to
the same bus as the two previous stations and controlled from another application. However, no
model is connected to it, so the control application only sets the outputs in a certain sequence,
which can be seen on the indicator LEDs.

This application is very simple, but the task of this work was not to manage a complex
model. It is quite sufficient to demonstrate the communication skills of the created Profibus
DP Master.

57

Profibus DP Master on PC Pavel Trnka

Figure B.1: Model of conveyors with manipulator

Figure B.2: Remote I / O stations connecting the model to Profibus

58

Attachment C
List of abbreviations

C.1 Abbreviations for Profibus

CSRD
YES
DAE

Cyclic Send and Request Data with reply (FDL Service)
Destination Address of a frame
Destination Address Extension (s) of a frame conveys DSAP and / or destination Bus
ID
Direc Data Link Mapper
Destination Service Access Point a LSAP which identifies the remote FDL User

End Delimiter of a frame
Frame Control (frame type) of a frame
Frame Check Sequence (checksum) of a frame used to detect corrupted frames
Fieldbus Data Link layer, OSI layer 2
Fieldbus MAnagement layer 1 and 2
GAP update factor the number of token rounds between GAP maintance
(update) cycles
Range of station addresses from This Station (TS) to its successor (NS) in the
logical token ring, excluding stations above HSA
GAP List containing the status of all stations in this station's GAP Highest
Stations Address installed (configured) on this Profibus segment List of
Active Stations
field giving LEngth of frame beyond fixed part field
that repeats LEngh to increase frame integrity
Link Service Access Point identifies one FDL User in a particular station Next
Station (FDL), the station to which this Master will pass the token Open
System Interconnection
PHYsical layer, OSI layer 1

DDML
DSAP

ED
FC
FCS
FDL
FMA1 / 2
G

GAP

GAPL
HSA
LAS
LE
LEr
LSAP
NS
OSI
PHY

59

Profibus DP Master on PC Pavel Trnka

PS Previous Station (FDL), the station which passes the token to this Master
station
Reply Service Access Point an LSAP at which Request Data may be obtained
Source Address of a frame
Source Address Extension (s) of a frame conveys SSAP and / or source Bus ID
Service Access Point, the point of interaction between entities in different
protocol layers
Start Delimiter of a frame
Send Data with Acknowledge FDL Service) Send
Data with No acknowledge (FDL Service) Send
and Request Data with reply (FDL Service)
Source Service Access Point, an LSAP which identifies the local FDL User
which initiates a transaction
SYNchronization bits of a frame (period of IDLE) it guarantees the specified
frame integrity and allow for receiver synchronization
BIT Time, FDL symbol period of the time to transmit one bit on this Profibus
System

RSAP
SA
SAE
SAP

SD
SDA
SDN
SRD
SSAP

SON

tBIT

C.2 Abbreviations for DDK

DDK
DIRQL
DPC

Drivers Development Kit
Device Interrupt ReQuest Level - the IRQL at which a given device interrupts.
Deferred Procedure Call - a Kernel-defined control object type which represents
a procedure that is to be called later. DPC usually finishes time consuming
operations initialized by ISR.
Globally Unique IDentifier
Hardware Abstraction Layer - a Windows NT / Windows 2000 executive
component that provides platform-specific support for the Kernel, I / O Manager,
kernel-mode debuggers, and lowest-level device drivers.
Interrupt Service Routine - a routine whose function is to service a device when it
generates an interrupt.
I / O Request Packet - is the basic I / O Manager structure used to communicate with
drivers and to allow drivers to communicate with each other
Interrupt ReQuest line - a hardware line over which a peripheral device, bus
controller, other processor, or the Kernel signals a request for service to the
microprocessor.
Interrupt ReQuest Level - the hardware priority level at which a given
kernelmode routine runs, thereby masking off interrupts with equivalent and
lower IRQL on the processor.
Plug and Play
Windows Driver Model
Windows Management Instrumentation

GUID
HAL

ISR

IRP

IRQ

IRQL

PnP
WDM
WMI

60

Attachment D
Contents of the enclosed CD

\src
\Controller
\Libraries
\Property Page

ProfiMu source codes
Driver and installation file source codes (INF file)
Application interface library source codes
Source codes for the Property Page - property settings panel
in Device Manager
Simple programs in C ++ Builder showing the use of the ProfiMu
application interface

\Samples used

\bin
\Controller

Resulting files ready to use
Compiled driver along with other files ready to install. Divided
by operating system into versions for Windows NT 4.0 and
Windows 2000 / XP
Static libraries of the ProfiMu application interface\Libraries

\Documentation All documentation in electronic form, which was mostly
obtained from the Internet about the Profibus, the RS-485
standard, writing drivers, etc.

\HTML This diploma thesis converted into HMTL format for display on
the Internet.

\Latex The complete "source code" of this document in LANDTEX along
with pictures. Good inspiration for those who also want to write
their diploma thesis in LANDTEX.

61

Picture list

2.1
2.2
2.3
2.4
2.5
2.6
2.7

ISO / OSI model and Profibus DP. Profibus
character format. Token Frame
format. Frame format without
data. Fixed length data frame
format. Variable-length data frame
format. FDL layer state
machine. .

4
7
7
8
8
8
9

3.1
3.2
3.3

Simple RS-232 / RS-485 interface. UART
transmitter interrupted. Reduction for
connecting Tedia cards to Profibus.

17
18
20

4.1
4.2
4.3
4.4
4.5

Kernel Mode. IRP
processing. Legacy driver
structure. PnP driver
structure. Property
Page. .

22
26
28
32
36

5.1
5.2
5.3

Use of RS 232/485 converter. ProfiM block
diagram. CPU load according to baud
rate.

42
44
46

B.1 Model of conveyors with manipulator. .
B.2 Remote input and output stations connecting the model to Profibus. . . .

58
58

62

List of tables

3.1 Comparison of RS-232 baud rates in PC and Profibus (values are in
bps). Features of UART
circuits. .

19
203.2

4.1 Priority levels. 27

5.2 CPU load according to baud rate. 45

63

Literature

[1] RŮŽIČKA, Pavel. Implementation of Profibus FDL layer. Thesis. Prague: Czech Technical
University, Faculty of Electrical Engineering, Department of Control Engineering, 2002. 73 p.

[2] SMEJKAL, Radek. Implementation of Profibus DP master. Thesis. Prague: Czech Technical
University, Faculty of Electrical Engineering, Department of Control Engineering, 2002. 79 p.

[3] BARTOSIŃKI, Roman. Implementation of USB interface for computer peripherals. Thesis.
Prague: Czech Technical University, Faculty of Electrical Engineering, Department of Control
Engineering, 2003. 82 p.

[4] ONEY, WALTER. Programming the Microsoft Windows Driver Model. Second Edition.
Microsoft Press, 2002. 800 pp. ISBN 07-3561-803-8.

[5] PROFIBUS Specification. Edition 1.0. Karlsruhe: PROFIBUS International, 1997. 924 p.
European Standard EN 50 170.

[6] FDL Programming Interface. Release 4. Karlsruhe: Siemens AG, 1995. 126 p.

[7] BURGET, Pavel. Implementation of DP Slave devices. Prague: Czech Technical University, Faculty of
Electrical Engineering, Department of Control Engineering, 1999. 5 p.

[8] RS – 232 and RS – 485 Application Note. Octomber 1997 Revision. Ottawa: B&B
Electronics Ltd., 1997. 44 p.

[9] OX16PCI954 Data Sheet. Revision 1.3. Oxfordshire: Oxford Semiconductor LTD.,
1999. 72 p.
URL: <http://www.oxsemi.com>

[10] PCI-COM communication cards for the PCI bus. Revision 04.2003. Plzen: TEDIA spol.
sro, 2003. 28 p.
URL: <http://www.tedia.cz>

64

Profibus DP Master on PC Pavel Trnka

[11] VIRIUS, Miroslav. C ++ programming. Prague: Czech Technical University, 2001. 364
pp. ISBN 80-01-01874-1.

[12] Microsoft Developer Network - Device Drivers Development. Microsoft.
URL:<http://msdn.microsoft.com>

[13] BOLDIS, Petr. Bibliographic citations of documents according to ČSN ISO 690 and ČSN ISO 690-2
(01 0197): Part 1 Citation: methodology and general rules. Version 3.2. © c 1999-2002,
latest updates 3.9. 2002.
URL: <http://www.boldis.cz/citace/citace1.pdf>

65

